
The Influence of the Java Collection Framework on Overall
Energy Consumption∗

Rui Pereira, Marco
Couto, João Saraiva

HASLab/INESC TEC & Minho
University, Portugal

{ruipereira, marcocouto,
jas}@di.uminho.pt

Jácome Cunha
NOVA LINCS, DI, FCT,
Universidade NOVA de

Lisboa, Portugal
jacome@fct.unl.pt

João Paulo Fernandes
RELEASE, Universidade da

Beira Interior, Portugal
jpf@di.ubi.pt

ABSTRACT
This paper presents a detailed study of the energy consump-
tion of the different Java Collection Framework (JFC) im-
plementations. For each method of an implementation in
this framework, we present its energy consumption when
handling different amounts of data. Knowing the greenest
methods for each implementation, we present an energy op-
timization approach for Java programs: based on calls to
JFC methods in the source code of a program, we select
the greenest implementation. Finally, we present prelimi-
nary results of optimizing a set of Java programs where we
obtained 6.2% energy savings.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software design tradeoffs; Software evolution;

Keywords
Green Computing, Energy-aware Software

1. INTRODUCTION
The increasing energy costs related to ICT in organiza-

tions [9], and society’s environmental concerns, are changing
the way both computer manufacturers and software engi-
neers develop their products. While in the previous century,

∗This work is financed by the ERDF – European Regional Devel-
opment Fund through the Operational Programme for Competi-
tiveness and Internationalisation - COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, and by National
Funds through the FCT – Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology) as
part of project UID/EEA/50014/2013; and by FLAD/NSF un-
der the project Software Repositories for Green Computing, ref.
300/2015. The first author is also sponsored by FCT grant
SFRH/BPD/112733/2015.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GREENS’16, May 16 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4161-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896967.2896968

improving execution time was the main goal when devel-
oping hardware/software, and thus programming languages
and their compilers were designed to produce fast systems,
nowadays energy consumption is becoming the bottleneck of
such systems. As a consequence, powerful libraries offered
by programming languages and their compiler optimizations
have to consider this new reality.

In this paper we conduct a detailed study in terms of en-
ergy consumption of the widely used Java Collections Frame-
work (JCF) library 1. We consider three different groups of
data structures, namely Sets, Lists, and Maps, and for each
of these groups, we study the energy consumption of each of
its different implementations and methods. We exercise and
monitor the energy consumed by each of the API methods
when handling low, medium and big data sets.

A first result of our study is a quantification of the energy
spent by each method of each implementation, for each of the
data structures we consider. This energy-awareness can not
only be used to steer software developers in writing greener
software, but also in optimizing legacy code. In fact, we have
used/validated this quantification by semi-automatically op-
timizing the energy consumption of a set of similar software
systems.

As a second result, we statically compute which imple-
mentations and methods are used in the source code of such
projects, and then look up the energy consumption data
to find which equivalent implementation has the lowest en-
ergy consumption for those specific methods. Finally, we
manually transform the source code to use the “greenest”
implementation. Our preliminary results show that energy
consumption decreased in all the optimized software systems
that we tested, with an average energy saving of 6.2%.

With our work we are answering the following research
questions:

• RQ 1 - Can we define an energy consumption quantification
of Java data structures and their methods?

• RQ 2 - Can we use such quantification to decrease the
energy consumption of software systems?

This paper is organized as follows: Section 2 contains our
analysis of the energy consumption of the different Java Col-
lection Framework implementations. In Section 3 we de-
scribe our methodology to optimize Java programs and its
application to five Java programs. Section 4 presents the va-
lidity threats for our analysis. Next, we present related and
1docs.oracle.com/javase/7/docs/technotes/guides/
collections/index.html

2016 5th International Workshop on Green and Sustainable Software

 15

future work (Sections 5 and 6, respectively), and in Section 7
we present the conclusions of our work.

2. TOWARDS A RANKING OF JAVA IMPLE-
MENTATION’S METHODS

One of our goals is to compare the energy consumption
of different Java implementations of the same abstract data
structures. To do this, we designed an experiment that sim-
ulates different kinds of uses of such structures. In this sec-
tion we present the design, execution, and results of that
simulation.

2.1 Design
Our experiment design is inspired by the one used in [15],

since our analysis also considers a simple scenario of storing,
retrieving, and deleting String values in the various collec-
tions.

JCF Data structures.
The most classical way to separate Java data structures

is into groups which implement the interfaces Set2, List3, or
Map4, respectively. This separation indeed makes sense as
each interface has its own distinct properties and purposes
(for example, there is no ordering notion under Sets).

In our study, a few implementations were not evaluated
as they are quite particular in their usage and could not
be populated with strings. In particular, JobStateReasons
(Set) only accepts JobStateReason objects, IdentityHashMap
(Map) accepts strings but compares its elements with the
identity function, and not with the equals method.

Given these considerations, we evaluated the following im-
plementations:

Sets ConcurrentSkipListSet, CopyOnWriteArraySet, HashSet,
LinkedHashSet, TreeSet

Lists ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList,
RoleList, RoleUnresolvedList, Stack, Vector

Maps ConcurrentHashMap, ConcurrentSkipListMap, HashMap,
Hashtable, IdentityHashMap, LinkedHashMap, Properties,
SimpleBindings, TreeMap, UIDefaults, WeakHashMap

Methods.
To choose the methods to measure for each abstraction, we

looked at the generic API list for the corresponding interface.
From this list, we chose the methods which performed in-

sertion, removal, or searching operations on the data struc-
tures, along with a method to iterate and consult all the
values in the structure. In some methods (e.g. containsAll
or addAll), a second data structure is needed.

Sets add, addAll, clear, contains, containsAll, iterateAll, itera-
tor, remove, removeAll, retainAll, toArray

Lists add, addAll, add (at an index), addAll (at an index), clear,
contains, containsAll, get, indexOf, iterator, lastIndexOf,
listIterator, listIterator (at an index), remove, removeAll,
remove (at an index), retainAll, set, sublist, and toArray

Maps clear, containsKey, containsValue, entrySet, get, iterateAll,
keySet, put, putAll, remove, and values

2docs.oracle.com/javase/7/docs/api/java/util/Set.html
3docs.oracle.com/javase/7/docs/api/java/util/List.html
4docs.oracle.com/javase/7/docs/api/java/util/Map.html

Benchmark.
To evaluate the different implementations on each of the

described methods, we started by creating and populating
objects with different sizes for each implementation. 5

We considered initial objects with 25.000, 250.000, and
1.000.000 elements, providing our analysis with multiple or-
ders of magnitude of measurement. This will allow us to
better understand how the energy consumption scales in re-
gards to population size.

When a second data structure is required, we have adopted
for it a size6 of 10% the popsize of the tested structure, con-
taining half existing values from the tested structure and
half new values, all shuffled.

Table 1 briefly summarizes how each method is tested for
the Setcollection. The tests for the other collections are
similar, and their full description can be found at the online
appendix for this paper7.

Table 1: Test description of Set methods
Method Description of the test for the method
add add popsize/10 elements. half existing, half new
addAll addAll of secondaryCol 5 times
clear clear 5 times
contains contains popsize/10 elements. half existing, half new
containsAll containsAll of secondaryCol 5 times
iterateAll iterate and consult popsize values
iterator iterator popsize times
remove remove popsize/10 elements. half existing, half new
removeAll removeAll of secondaryCol 5 times
retainAll retainAll of secondaryCol 5 times
toArray toArray 5 times

2.2 Execution
To analyze the energy consumption, we first implemented

our data structure analysis design as an energy benchmark
framework. This is one of our contributions, and can be
found at github.com/greensoftwarelab/Collections-Energy-
Benchmark. This implementation is based on a publicly
available micro-benchmark8 which evaluates the runtime per-
formance of different implementations of the Collections API,
and has been used in a previous study to obtain energy mea-
surements [15].

To allow us to record precise energy consumption mea-
surements from the CPU, we used Intel’s Runtime Average
Power Limit (RAPL) [5]. RAPL is an interface which allows
access to energy and power readings via a model-specific reg-
ister. Its precision and reliability has been extensively stud-
ied [6, 21]. More specifically, we used jRAPL [14] which is a
framework for profiling Java programs using RAPL. Using
these tools permitted us to obtain energy measurements on
a method level, allowing us a fine grained measurement.

We ran this study on a server with the following spec-
ifications: Linux 3.13.0-74-generic operating system, 8GB
of RAM, and Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz.
This system has no other software installed or running other
than necessary to run this study, and the operating system
daemons. Both the Java compiler and interpreter were ver-
sions 1.8.0 66.

5We will refer to the population size of an object as popsize.
6We will refer to the size of each such structure as sec-
ondaryCol.
7greenlab.di.uminho.pt/wp-content/uploads/2016/02/
appendixGreens.pdf
8dzone.com/articles/java-collection-performance

16

Prior to executing a test, we ran an initial “warm-up”
where we instantiated, populated (with the designated pop-
size), and performed simple actions on the data structures.
Each test was executed 10 times, and the average values for
both the time and energetic consumption were extracted (of
the specific test, and not the initial “warm-up” as to only
measure the tested methods) after removing the lowest and
highest 20% as to limit outliers.

2.3 Results
This section presents the results we gathered from the ex-

periment. We highly recommend and assume the images are
being viewed in color. Figures 1, 3, and 4 represent the data
for our analyzed Sets, Lists, and Maps respectively. Each
row in the tables represents the measured methods, and for
each analyzed implementation, we have two columns repre-
senting the consumption in Joules(J) and execution time in
milliseconds(ms). Each row has a color highlight (under the
J columns) varying between a Red to Yellow to Green. The
most energetically inefficient implementation for that row’s
method (the one with the highest consumed Joules) is high-
lighted Red. The implementation with the lowest consumed
Joules (most energetically efficient) is highlighted Green.
The rest are highlighted depending on their consumption
values when compared to the most inefficient and efficient
implementation, and colored accordingly in the color scale.

Figures 2 is a graphical representation of the data for
our analyzed Sets. The Y-Axis represents the consumption
in Joules, and the X-Axis represents the various measured
methods. Each column represents a specific analyzed imple-
mentation.

The CopyOnWriteArraySet implementation was discarded
during the experiment execution as the tests did not finish
in a reasonable amount of time. For the full representation
of the data/graphs of the other two population sizes and
omitted data, please consult the online appendix. From our
data, we can draw interesting observations:

• Looking at the Set results for population of 25k data
(shown in Fig 1) we can see that LinkedHashSet in-
cludes most of the energetically efficient methods. Nev-
ertheless, one can easily notice that it is also the most
inefficient with the addAll and containsAll methods.

• Figure 3 presents the List results for population of 25k.
Both RoleUnresolvedList and AttributeList contain the
most efficient methods. Interesting to point out that
both of these extend ArrayList, which contains less ef-
ficient methods, and very different consumption values
in comparison with these two. We can also clearly see
that LinkedList is by far the most inefficient List im-
plementation.

• In Figure 4, we can see that Hashtable, LinkedHashMap,
and Properties contain the most efficient methods, and
with no red methods. Interesting to note is that while
the Properties data structure is generally used to store
project configuration data/settings, it produced very
good results for our scenario of storing string values.

• The concurrent data structure implementations (Con-
currentSkipListSet, CopyOnWriteArrayList, Concur-
rentHashMap, ConcurrentSkipListMap, and the remo-
ved CopyOnWriteArraySet) perform very poorly. As

such, these should probably be avoided if a require-
ment is a low consuming application.

• One can see cases where a decrease in execution time
translates into a decrease in the energy consumed as
suggested by [27]. For instance in Figure 4, when com-
paring Hashtable and TreeSet for the get method, we
see that Hashtable has both a lower execution time and
energy consumption. As observed by [25, 20], cases
where an increase in execution time brings about a de-
crease in the energy consumed can also be seen, for
example in Figure 4 when comparing HashMap and
Hashtable for the keySet method. As such, we cannot
draw any conclusion of the correlation between execu-
tion time and energy being consumed.

• Different conclusions can be drawn for the 250k and
1m population sizes (which can be seen in our online
appendix). This also shows that the energy consump-
tion of different data structure implementations scale
differently in regards to size. What may be the most
efficient implementation for one population size, may
not be the best for another.

3. OPTIMIZING ENERGY CONSUMPTION
OF JAVA PROGRAMS

The results presented in the previous section may allow
software developers to develop more energy efficient soft-
ware. In this section we present a methodology to optimize,
at compilation time, existing Java programs. This method-
ology consists of the following steps:

1. Computing which implementation/methods are used in the
programs

2. Looking up the appropriate energy tables for the used im-
plementation/methods

3. Choosing the most efficient implementation based on total
energy

In the next subsection, we describe in detail how we ap-
plied this approach and how it was used to optimize a set of
equivalent Java programs.

3.1 Data Acquisition
First, we obtained several Java projects from an object-

oriented course for undergraduate computer science students.
For this course, students were asked to build a journalism
support platform, where users (Collaborators, Journalists,
Readers, and Editors) can write articles (chronicles and re-
ports), and give likes and comments. Along with these differ-
ent platform implementations, we obtained seven test cases
which simulated using the system (registering, logging in,
writing articles, commenting, etc.). The size of users, ar-
ticles, and comments varied between approximately 2.000
and 10.000 each for each different test case and each entity.
These projects had an average of 36 classes, 104 methods,
and 2.000 lines of code.

Next we discuss the optimization of five of those projects,
where we semi-automatically detected the use of any JCF
implementation (both efficient and inefficient implementa-
tions), and which were the used methods for each imple-
mentation.

17

Figure 1: Set results for population of 25k Figure 2: Set results graph for population of 25k

Figure 3: List results for population of 25k

Figure 4: Map results for population of 25k

3.2 Choosing an energy efficient alternative
To try to optimize these projects based on the data struc-

tures and their used methods, we looked at our data for the
25k population. We chose this one, as it is the one which is
closest to the population used in the test cases (which was
between 2.000 and 10.000 for each different entity).

For each detected data structure implementation, we se-
lected the used methods, and chose our optimized data struc-
ture based on the implementation which consumed the least
amount of energy for this specific case.

Figure 5 shows the data used to make our decision for
the Maps of Project 1, where Hashtable was used in place
of TreeMap (as Hashtable was the most efficient implemen-
tation in this scenario with 6.8J). Table 2 details the 5
Projects, their originally used data structure implementa-

tions, new implementation, and used methods for the im-
plementations.

Table 2: Original and optimized data structures, and
used methods for each project

Data Structures
Projects Original Optimized Methods

1
TreeMap Hashtable {containsKey, get, put, values}

LinkedList ArrayList {add, listIterator}
2 HashMap Hashtable {containsKey, get, put, values}
3 LinkedList ArrayList {add, addAll, iterator, listIterator, remove}

4
LinkedList AttributeList {add (at an index), iterator}
HashMap Hashtable {containsKey, get, put}

5
HashMap Hashtable {containsKey, get, put}
TreeSet LinkedHastSet {add, iterator}

3.3 Pre-energy measurement setup

18

Figure 5: Choosing optimized Map for Project 1

Now that we have chosen our energy efficient alternative,
we need to change the projects to reflect this. The source
code was manually altered to use the chosen implementa-
tions. Finally, we verified that the program maintained the
original consistency and state by verifying if the outputs and
operations produced by these two versions did not change.

3.4 Energy measurements
To measure the original, and optimized projects, we fol-

lowed the same methodology detailed in Section: 2.2 Execu-
tion. We executed the seven test cases in the same server,
and using jRAPL obtained the energy consumption mea-
surements. Each test was also executed 10 times, and the
average values (after removing the 20% highest and lowest
values) were calculated.

3.5 Results
Table 3 presents, for each project, the energy consump-

tion in Joules (J), and execution time in milliseconds (ms)
for both the original and optimized implementations. The
last column shows the improvement gained after having per-
formed the optimized implementations for both the con-
sumption and execution time.

Table 3: Results of pre and post optimization
Data Structures

Projects Original Optimized Improvement
J ms J ms J ms

1 23.744583 1549 22.7071302 1523 4.37% 1.68%
2 24.6787895 1823 23.525123 1741 4.67% 4.50%
3 25.0243507 1720 22.259355 1508 11.05% 12.33%
4 17.1994425 1258 16.2014997 1217 5.80% 3.26%
5 19.314512 1372 18.3067573 1245 5.22% 9.26%

As we can see, all five programs improve their energy ef-
ficiency. Our optimization improves their energy consump-
tion between 4.37% and 11.05%, with an average of 6.2%.

4. THREATS
The goal of our experiments was to define the energy con-

sumption profile of JCF implementations and validate such
results. As in any experiment, there are a few threats to its
validity. We start by presenting the validity threats for the
first experiment, that is, the evaluation of the energy con-
sumption of several Java data structure methods. We divide
these threats in four categories as defined in [3], namely:
conclusion validity, internal validity, construct validity, and
external validity.

4.1 JCF Implementations Profile
We start by discussing the threats to validity of the first

experiment.

Conclusion Validity.

We used the energy consumption measurements to estab-
lish a simplistic order between the different implementations.
To do so, we have based ourselves on an existing bench-
mark (although developed to measure different things). To
perform the actual measurements, we used RAPL which is
known to be a quite reliable tool [6, 21]. Thus, we believe
the finding are quite reliable.

Internal Validity.
The energy consumption measurements we have for the

different implementations/methods could have been influ-
enced by other factors other than just their source code ex-
ecution. To mitigate this issue, for every test we added a
“warm-up” run, and we ran every test 10 times, taking the
average values for these runs so we could minimize particular
states of the machine and other software in it (e.g. operat-
ing system daemons). Moreover, we ran the tests in a Linux
server with no other software running except for the oper-
ating system and its services in order to isolate the energy
consumption values for the code we were running as much
as possible.

Construct Validity.
We have designed a set of tests to evaluate the energy

consumption of the methods of the different JCF implemen-
tations. As software engineers ourselves, we have done the
best we can and know to make them as real and interesting
as possible. However, these experiments could have been
done in many other different ways. In particular, we have
only used strings to perform our evaluation. We have also
fixed the size of the collections in 25K, 250K, and 1M. Nev-
ertheless, we believe that since all the tests are the same for
all the implementations (of a particular interface), different
tests would probably produce the same relationship between
the consumption of the different implementations and their
methods. Still, we make all our material publicly available
for better analysis of our peers.

External Validity.
The experiment we performed can easily be extended to

include other collections. The method can also be easily
adapted to other programming languages. However, until
such execution are done, nothing can be said about such
results.

4.2 Validating the Measurements
Next we present the threats to validity, again divided in

four categories, for the experiment we performed to evaluate
the impact of the finding of the first study when changing
the implementations in a complete program.

Conclusion Validity.

19

Our validation assumed that each method is on the same
level of importance or weight, and does not distinguish be-
tween possible gain of optimizing for one method or another
(for instance, there might be more gain in optimizing for a
commonly used add method over a retainAll method). Thus,
the method of choosing the best alternative implementa-
tion would need fine tuning. Nevertheless, it is consistent
that changing an implementation by another influences the
energy consumption of the code in the same line with the
results found for the implementations/methods in the first
experiment.

Internal Validity.
The energy consumptions measures we have for the differ-

ent projects (before and after changing the used implemen-
tations) could have influence from other factors. However,
the most important thing is the relationship between the
value before and after changing the implementations. Nev-
ertheless, we have executed each project 10 times and calcu-
lated the average so particular states of the machine could
be mitigated as much as possible in the final results.

Construct Validity.
We used 5 different (project) implementation of a single

problem developed by students in the second semester of
an undergraduation in Computer Science. This gave us dif-
ferent solutions for the same problem that can be directly
compared as they all passed a set of functional tests de-
fined in the corresponding course. However, different kinds
of projects could have different results. Nevertheless, there
is no basis to suspect that these projects are best or worst
than any other kind. Thus, we expect to continue to see
gains/losses when changing implementations in any other
kinds of software projects according to our findings.

External Validity.
The used source code has no particular characteristics

which could influence our findings. The main characteris-
tic is possibly the fact that it was developed by novice pro-
grammers. Nevertheless, we could see the impact of chang-
ing data structure implementations in both the good and
bad (project) implementations. Thus, we believe that these
results can be further generalized for other projects. Never-
theless, we intend to further study this issue and perform a
wider evaluation.

5. RELATED WORK
Although energy consumption analysis is an area explored

for the last two decades, only more recently has it started
to focus on software improvement more than hardware im-
provement. In fact, designing energy-aware programming
languages is an active area [2], and software developers claim
for tools and techniques to support them in the goal of de-
veloping energy-aware development [19]. Even in software
testing, researchers want to know how to reduce energy con-
sumption and where do they need to focus to do it [12].

Studies have shown that there are a lot of software de-
velopment related factors that can significantly influence
the energy consumption of a software system. Different
design patterns, using Model-View-Controller, information
hiding, implementation of persistence layers, code obfusca-
tions, refactorings, and the usage of different data struc-

tures [1, 11, 13, 15, 22, 23, 24, 26] can all influence energy
consumption, and all are software related implementation
decisions.

Some other research works are even focused on detect-
ing excessive/anomalous energy consumptions in software,
not by comparing the overall energy consumption of differ-
ent implementations of the same software system, but by
using tools and techniques specialized in determining the
consumption per blocks of code, such as methods [4], source
code instructions [11] or even bytecode instructions [7]. Those
works are based on an energy consumption model: a predic-
tion model which can relate such blocks of code with the
amount of energy that they are expected to consume. The
concept of energy models have been widely used, particu-
larly in the mobile area [7, 8, 16, 17, 18].

In a more focused and concrete way, some research works
also analyzed the efficiency of data structures [15]. Manotas
et al. [15] built a framework which was capable of determin-
ing the gain or loss, in a global point of view, of switching
from one Java collection to another. Nevertheless, we have
studied the behavior of a broader set of data structure im-
plementations, divided between the appropriate groups, dif-
ferent population sizes, and a larger number of operations
per structure. More recently, a study of the energy profiles
of java collection classes has been performed [10] with the
same goals as ours. The two studies were performed inde-
pendently and seem to produce similar conclusions. Never-
theless, the energy quantification is not the only and main
contribution in our paper.

6. FUTURE WORK
There are several directions for future work. We will con-

tinue to evolve our data and perform further tests and anal-
yses. More specifically, we will extend our tests to evaluate
other population sizes, more data structures, interface spe-
cific methods, and other types of input other than Strings.

To choose the most efficient alternative implementation,
we are defining a new algorithm which uses the number of
occurrences of the methods, and different weights for differ-
ent methods.

We are also planning to extend this work into an auto-
matic analysis and refactoring tool plugin. This tool would
would detect if an energy inefficient data structure is being
used, suggest an alternative energy efficient data structure,
and even automatically refactor the source-code to optimize
consumption.

7. CONCLUSION
This paper presented a detailed study of the energy con-

sumption of the Sets, Lists, and Maps data structures in-
cluded in the Java collections framework. We presented a
quantification of the energy spent by each API method of
each of those data structures.

Moreover, we introduced a very simple methodology to
optimize Java programs. Based on their JCF data struc-
tures and methods, and our energy quantifications, a trans-
formation to decrease the energy consumption is suggested.
We have presented our first experimental results that show
a decrease of 6.2% in energy consumption.

20

8. REFERENCES
[1] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.

The impact of source code transformations on software
power and energy consumption. Journal of Circuits,
Systems, and Computers, 11(05):477–502, 2002.

[2] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu.
Energy types. In ACM SIGPLAN Notices, volume 47,
pages 831–850. ACM, 2012.

[3] T. D. Cook, D. T. Campbell, and A. Day. Quasi-
experimentation: Design & analysis issues for field
settings, volume 351. Houghton Mifflin Boston, 1979.

[4] M. Couto, T. Carção, J. Cunha, J. Fernandes, and
J. Saraiva. Detecting anomalous energy consumption
in android applications. In Programming Languages,
volume 8771 of Lecture Notes in Computer Science,
pages 77–91. Springer International Publishing, 2014.

[5] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. Rapl: memory power estimation and
capping. In Low-Power Electronics and Design
(ISLPED), 2010 ACM/IEEE International
Symposium on, pages 189–194. IEEE, 2010.

[6] M. Hähnel, B. Döbel, M. Völp, and H. Härtig.
Measuring energy consumption for short code paths
using RAPL. SIGMETRICS Performance Evaluation
Review, 40(3):13–17, 2012.

[7] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating android applications’ cpu energy usage via
bytecode profiling. In Proceedings of the First
International Workshop on Green and Sustainable
Software (GREENS), pages 1–7, May 2012.

[8] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption
using program analysis. In Proc. of the 35th Int. Conf.
on Software Engineering (ICSE), May 2013.

[9] R. R. Harmon and N. Auseklis. Sustainable it services:
Assessing the impact of green computing practices. In
Management of Engineering & Technology, 2009.
PICMET 2009. Portland International Conference on,
pages 1707–1717. IEEE, 2009.

[10] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams,
and A. Hindle. Energy profiles of java collections
classes. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), Austin,
TX, US, May 2016. to appear.

[11] D. Li, S. Hao, W. G. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis, pages 78–89. ACM, 2013.

[12] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. Halfond.
Integrated energy-directed test suite optimization. In
Proc. of the 2014 Int. Symp. on Software Testing and
Analysis, pages 339–350. ACM, 2014.

[13] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an
empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages
2–11. ACM, 2014.

[14] K. Liu, G. Pinto, and Y. D. Liu. Data-oriented
characterization of application-level energy
optimization. In Fundamental Approaches to Software

Engineering, pages 316–331. Springer, 2015.

[15] I. Manotas, L. Pollock, and J. Clause. Seeds: A
software engineer’s energy-optimization decision
support framework. In Proc. of the 36th International
Conference on Software Engineering, pages 503–514.
ACM, 2014.

[16] S. Nakajima. Model-based power consumption
analysis of smartphone applications. In 16th
International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2013),
Miami, Florida, USA, September 29th, 2013., 2013.

[17] S. Nakajima. Model checking of energy consumption
behavior. In Proceedings of the First Asia - Pacific
Conference on Complex Systems Design &
Management, CSD&M Asia 2014, Singapore,
December 10-12, 2014, pages 3–14, 2014.

[18] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M.
Wang. Fine-grained power modeling for smartphones
using system call tracing. In Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, pages
153–168, New York, NY, USA, 2011. ACM.

[19] G. Pinto, F. Castor, and Y. D. Liu. Mining questions
about software energy consumption. In Proceedings of
the 11th Working Conference on Mining Software
Repositories, pages 22–31. ACM, 2014.

[20] G. Pinto, F. Castor, and Y. D. Liu. Understanding
energy behaviors of thread management constructs. In
Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems
Languages & Applications, pages 345–360. ACM, 2014.

[21] E. Rotem, A. Naveh, A. Ananthakrishnan,
E. Weissmann, and D. Rajwan. Power-management
architecture of the intel microarchitecture code-named
sandy bridge. IEEE Micro, 32(2):20–27, 2012.

[22] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause,
F. Kiamilev, L. Pollock, and K. Winbladh. Initial
explorations on design pattern energy usage. In Green
and Sustainable Software (GREENS), 2012 First
International Workshop on, pages 55–61. IEEE, 2012.

[23] C. Sahin, L. Pollock, and J. Clause. How do code
refactorings affect energy usage? In Proceedings of the
8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement,
page 36. ACM, 2014.

[24] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and
J. Clause. How does code obfuscation impact energy
usage? In Software Maintenance (ICSM), 2013 29th
IEEE International Conference on. IEEE, 2014.

[25] A. E. Trefethen and J. Thiyagalingam. Energy-aware
software: Challenges, opportunities and strategies.
Journal of Computational Science, 4(6):444–449, 2013.

[26] A. Vetro’, L. Ardito, G. Procaccianti, and M. Morisio.
Definition, implementation and validation of energy
code smells: an exploratory study on an embedded
system. In Proceedings of ENERGY 2013 : The Third
International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies,
pages 34–39, 2013.

[27] T. Yuki and S. Rajopadhye. Folklore confirmed:
Compiling for speed= compiling for energy. In
Languages and Compilers for Parallel Computing,
pages 169–184. Springer, 2014.

21

