
Haskell in Green Land: Analyzing the Energy
Behavior of a Purely Functional Language

Luís Gabriel Lima, Francisco Soares-Neto,
Paulo Lieuthier, Fernando Castor

Informatics Center
Federal University of Pernambuco (UFPE)

Recife, Brazil
{lgnfl, fmssn, pvjl, castor}@cin.ufpe.br

Gilberto Melfe∗, João Paulo Fernandes∗†
∗LISP-Release, †HASLab/INESC TEC

Department of Computer Science
University of Beira Interior

Covilhã, Portugal
gilbertomelfe@gmail.com, jpf@di.ubi.pt

Abstract—Recent work has studied the effect that factors
such as code obfuscation, refactorings and data types have
on energy efficiency. In this paper, we attempt to shed light
on the energy behavior of programs written in a lazy purely
functional language, Haskell. We have conducted two empirical
studies to analyze the energy efficiency of Haskell programs
from two different perspectives: strictness and concurrency.
Our experimental space exploration comprises more than 2000
configurations and 20000 executions.

We found out that small changes can make a big difference
in terms of energy consumption. For example, in one of our
benchmarks, under a specific configuration, choosing one data
sharing primitive (MVar) over another (TMVar) can yield 60%
energy savings. In another benchmark, the latter primitive can
yield up to 30% energy savings over the former. Thus, tools
that support developers in quickly refactoring a program to
switch between different primitives can be of great help if
energy is a concern. In addition, the relationship between energy
consumption and performance is not always clear. In sequential
benchmarks, high performance is an accurate proxy for low
energy consumption. However, for one of our concurrent bench-
marks, the variants with the best performance also exhibited
the worst energy consumption. To support developers in better
understanding this complex relationship, we have extended two
existing performance analysis tools to also collect and present
data about energy consumption.

I. INTRODUCTION

Energy-efficiency has concerned hardware and low-level
software engineers for years [1], [2], [3]. However, the growing
worldwide movement towards sustainability, including sustain-
ability in software [4], combined with the systemic nature
of energy efficiency as a quality attribute have motivated the
study of the energy impact of application software in execu-
tion. This tendency has led researchers to evaluate existing
techniques, tools, and languages for application development
from an energy-centric perspective. Recent work has studied
the effect that factors such as code obfuscation [5], Android
API calls [6], object-oriented code refactorings [7], constructs
for concurrent execution [8], and data types [9] have on
energy efficiency. Analyzing the impact of different factors on
energy is important for software developers and maintainers.
It can inform their decisions about the best and worst solution
for a particular context. Moreover, it is important to make
developers aware that seemingly small modifications can yield
considerable gains in terms of energy. For example, a study by

Vasquez et al. [6] has discovered that some Android API calls
consume 3000 times more energy than the average Android
API call. These API calls should clearly be avoided if energy
is an important requirement.

In this paper, we explore an additional dimension. We
attempt to shed light on the energy behavior of programs
written in a lazy, purely functional language. More specifically,
we target programs written in Haskell. Functional languages,
in general, include a number of features that are not generally
available in imperative programming languages. In particular,
Haskell has mature implementations of sophisticated features
such as laziness, partial function application, software trans-
actional memory, tail recursion, and a kind system [10].
Furthermore, recursion is the norm in Haskell programs and
side effects are restricted by the type system of the language.
Due to all these differences, it is possible that programs written
in such a language behave differently from those written in im-
perative languages, from an energy perspective. Additionally,
functional languages and features are increasing in popularity.
Huge corporations with concerns for energy consumption,
such as Facebook, use Haskell for efficient parallel data access
on their servers [11]. Meanwhile, mainstream programming
languages like Java and C# have adopted functional program-
ming features such as lambdas [12], [13].

We analyze the energy efficiency of Haskell programs from
two different perspectives: strictness and concurrency. By
default, expressions in Haskell are lazily evaluated, meaning
that any given expression will only be evaluated when it is first
necessary. This is different from most programming languages,
where expressions are evaluated strictly and possibly multiple
times. In Haskell, it is possible to force strict evaluation in
contexts where this is useful. This is very important to analyze
the performance and energy efficiency of Haskell programs.
As for concurrency, previous work [8], [14] has demonstrated
that concurrent programming constructs can influence energy
consumption in unforeseen ways. In this paper, we attempt to
shed more light on this complex subject. More specifically, we
address the following high-level research question:

RQ. To what extent can we save energy by refactoring
existing Haskell programs to use different data structure
implementations or concurrent programming constructs?

To gain insight into the answer to this question, we con-
ducted two complementary empirical studies. In the first
one, we analyzed the performance and energy behavior of
several benchmark operations over 15 different implementa-
tions of three different types of data structures. Even though
Haskell has several implementations of well-known data struc-
tures [15], we are not aware of any experimental evaluation of
these implementations. In the second one, we assessed three
different thread management constructs and three primitives
for data sharing using nine benchmarks and multiple exper-
imental configurations. To the best of our knowledge, this
is the first study of its kind targeting Haskell’s concurrent
programming constructs. Overall, experimental space explo-
ration comprises more than 2000 configurations and 20000
executions.

We found that small changes can make a big difference
in terms of energy consumption. For example, in one of our
benchmarks, under a specific configuration, choosing one data
sharing primitive (MVar) over another (TMVar) can yield 60%
energy savings. Nonetheless, there is no universal winner. The
results vary depending on the characteristics of each program.
In another benchmark, TMVars can yield up to 30% energy
savings over MVars. Thus, tools that support developers in
quickly refactoring a program to switch between different
primitives can be of great help if energy is a concern. In
addition, the relationship between energy consumption and
performance is not always clear. Generally, especially in the
sequential benchmarks, high performance is a proxy for low
energy consumption. Nonetheless, when concurrency comes
into play, we found scenarios where the configuration with
the best performance (30% faster than the one with the
worst performance) also exhibited the second worst energy
consumption (used 133% more energy than the one with the
lowest usage). To support developers in better understanding
this complex relationship, we have extended two existing tools
for performance analysis to make them energy-aware. The
first one is the Criterion benchmarking library, which we have
employed extensively in the two studies. The second one is
the profiler that comes with the Glasgow Haskell Compiler.
The data for this study, as well as the source code for the
implemented tools and benchmarks can be found at green-
haskell.github.io.

II. RELATED WORK

Murphy-Hill et al. [16] provide an analysis on the use of
refactoring. Their study indicates how refactoring is common,
even if only executed manually. Dig and colleagues [17]
present some reasons why developers choose to apply pro-
gram transformations to make their programs concurrent.
They studied five open-source Java projects and found four
categories of concurrency-related motivations for refactor-
ing: Responsiveness, Throughput, Scalability and Correctness.
Their findings show that the majority of the transformations
(73.9%) consisted of modifying existing project elements,
instead of creating new ones. Our work shows that modifying
existing elements can also lead to energy savings, yet another
motivation for refactoring.

Various papers address the problem of refactoring Haskell

programs. Li et al. [18] present the Haskell Refactorer in-
frastructure to support the development of refactoring tools.
Lee [19] used a case study to classify 12 types of Haskell

refactorings found in real projects, mostly dealing with main-
tainability. Brown et al. [20] specified and implemented refac-
torings for introducing parallelism into Haskell programs,
considering mainly performance concerns. Just as mentioned
previously, our study may influence future Haskell program
maintenance as energy efficiency becomes a mainstream con-
cern. We are not aware of previous work analyzing the
energy efficiency of Haskell programs, in particular, or purely
functional programming languages, in general.

Several related works study the impact of software changes
on energy consumption. Hindle [21] studied the effects of
Mozilla Firefox’s code evolution on its energy efficiency,
showing a consistent reduction in energy usage correlated to
performance optimizations. Pinto et al. [8] studied the energy
consumption of different thread management primitives in the
Java programming language. We took a similar route in assess-
ing the consumption for Haskell’s thread management and data
sharing constructs. Sahin et al. [22] provide an analysis of the
effects of code refactorings on energy consumption for 9 Java
applications. For six commons refactorings, such as converting
local variables to fields, they showed an impact on energy
consumption that was difficult to predict. Our paper focuses
on Haskell programs and the impact of changes regarding
concurrent structures used and strictness of evaluation. Those
changes could be expressed as refactorings since the compared
versions have the same program behavior.

Kwon and Tilevich [23] reduced the energy consumption
of mobile apps by offloading part of their computation trans-
parently to programmers. Scanniello et al. [24] studied the
migration of a performance-intensive system to an architecture
based on GPU as a way to reduce energy waste. Moura et
al. [25] studied the commit messages of 317 real-world non-
trivial applications to infer the practices and needs of current
application developers. A recurring theme identified in this
study is the need for more tools to measure/identify/refactor
energy hotspots. Bruce et al. [26] used Genetic Improvement
to reduce the energy consumption of applications, reaching
up to 25% reduction. All these approaches show the potential
for program transformation, in general, and refactorings, in
particular, to reduce energy consumption. We explore this
potential further in this paper by targeting Haskell.

III. MEASURING ENERGY CONSUMPTION

This section presents the technology we used to measure
the energy consumption of Haskell programs. In section III-A,
we give a brief overview of our interface to gather energy
information from Intel processors. In sections III-B and III-C
we explain how we extended existing Haskell performance
analysis tools to also work with energy consumption.

All experiments presented in this paper were conducted
on a machine with 2x10-core Intel Xeon E5-2660 v2 pro-
cessors (Ivy Bridge microarchitecture) and 256GB of DDR3

2

http://green-haskell.github.io
http://green-haskell.github.io

1600MHz memory. This machine runs the Ubuntu Server
14.04.3 LTS (kernel 3.19.0-25) OS. The compiler was GHC
7.10.2, using Edison 1.3 (Section IV-A), and a modified
Criterion (Section III-B) library. Also, all experiments were
performed with no other load on the OS.

A. RAPL

Running Average Power Limit (RAPL) [27] is an interface
provided by modern Intel processors to allow setting custom
power limits to the processor packages. Using this interface
one can access energy and power readings via a model-
specific register (MSR). RAPL uses a software power model to
estimate the energy consumption based on various hardware
performance counters, temperature, leakage models and I/O
models [28]. Its precision and reliability has been extensively
studied [29], [30].

RAPL interfaces operate at the granularity of a processor
socket (package). There are MSRs to access 4 domains:

• PKG: total energy consumed by an entire socket
• PP0: energy consumed by all cores and caches
• PP1: energy consumed by the on-chip GPU
• DRAM: energy consumed by all DIMMs
The client platforms have access to {PKG, PP0, PP1} while

the server platforms have access to {PKG, PP0, DRAM}. For
this work, we collected the energy consumption data from the
PKG domain using the msr module of the Linux kernel to
access the MSR readings.

B. Criterion

Criterion [31] is a microbenchmarking library that is used
to measure the performance of Haskell code. It provides a
framework for both the execution of the benchmarks as well
as the analysis of their results, being able to measure events
with duration in the order of picoseconds.
Criterion is robust enough to filter out noise coming, e.g.,

from the clock resolution, the operating system’s scheduling
or garbage collection. Criterion’s strategy to mitigate noise is
to measure many runs of a benchmark in sequence and then
use a linear regression model to estimate the time needed for
a single run. That way, the outliers become visible.

Having been proposed in the context of a functional lan-
guage with lazy evaluation, Criterion natively offers mech-
anisms to evaluate the results of a benchmark in different
depths, such as weak head normal form or normal form.
Criterion is able to measure CPU time, CPU cycles, memory

allocation and garbage collection. In our work, we have ex-
tended its domain so that it is also able to measure the amount
of energy consumed during the execution of a benchmark.

The adaptation of Criterion has been conducted based on
two essential considerations. First, the energy consumed in
the sampling time intervals used by Criterion is obtained via
external C function invocations to RAPL. This is similar to
the time measurements natively provided by Criterion, which
are also realized via foreign function interface (FFI) calls.
Second, we need to handle possible overflows occurring on
RAPL registers [27]. For two consecutive reads x and y of

values in such registers, this was achieved by discarding the
energy consumed in the corresponding (extremely small) time
interval if y, which is read later, is smaller than x.

In the extended version of Criterion, energy consumption is
measured in the same execution of the benchmarks which is
used to measure runtime performance. In this version, all the
aforementioned aspects of Criterion’s original methodology
have straightforwardly been adapted for energy consumption
analysis.

C. GHC profiler

Currently, GHC profiler is capable of measuring time and
space usage. Developers can enable profiling by compiling a
program with the -prof flag. This makes the final executable
hold the profiling routines as part of the runtime system. Then,
when running this executable passing the +RTS -p argument,
the runtime system will collect data from the execution to
produce a report at the end. This report contains fine-grained
information of both time and space usage for each cost center.
The cost centers can be manually added to the source code by
the developer or automatically generated by the compiler.

To extend the profiler to also collect energy consumption
data, we based our solution on the approach used by the time
profiler [32]. To measure the execution time, the profiler keeps
in each cost center a tick counter. At any moment, the cost
center that is currently executing is held in a special register
by the runtime system. Then, a regular clock interrupt runs a
routine to increment this tick counter of the current cost center.
This makes it possible to determine and report the relative cost
of the different parts of the program.

Similarly, the energy profiler keeps in each cost center an
accumulator. At each clock interrupt, the profiler adds to the
accumulator of the current cost center the energy consumed
between the previous and current interrupt. At the end of the
execution, it can report the fine-grained information of energy
consumption for each cost center.

IV. COMPARING PURELY FUNCTIONAL DATA
STRUCTURES

In this section, we present our scenario to analyze and com-
pare different implementations for concrete data abstractions.
Our study is motivated by the following research questions:
RQ1. How do different implementations of the same abstrac-

tions compare in terms of runtime and energy efficiency?
RQ2. For concrete operations, what is the relationship be-

tween their performance and their energy consumption?
In Section IV-A, we describe a general purpose library pro-

viding different implementations for abstractions such as Se-

quences or Collections. In order to establish a comparison base-
line, these implementations were exercised by the series of op-
erations defined in the benchmark described in Section IV-B.

A. A library of purely functional data structures

Our analysis relies on Edison, a fully mature and well
documented library of purely functional data structures [15],
[33]. Edison provides different functional data structures for

3

TABLE I
ABSTRACTIONS AND IMPLEMENTATIONS AVAILABLE IN EDISON.

Collections Associative Collections Sequences
BankersQueue

EnumSet SimpleQueue
StandardSet BinaryRandList

UnbalancedSet AssocList JoinList
LazyPairingHeap PatriciaLoMap RandList

LeftistHeap StandardMap BraunSeq
MinHeap TernaryTrie FingerSeq

SkewHeap ListSeq
SplayHeap RevSeq

SizedSeq
MyersStack

implementing three types of abstractions: Sequences, Collec-
tions and Associative Collections. While these implementations
are available in other programming languages, e.g., in ML [33],
here we focus on their Haskell version. While this version
already incorporates an extensive unit test suite to guarantee
functional correctness, it can admittedly benefit from the type
of performance analysis we consider here [34].

In Table I, we list all the implementations that are available
for each of the abstractions considered by Edison. These
implementations can also be consulted in the EdisonCore [35]
and EdisonAPI [36] packages. Some of the listed implementa-
tions are actually adaptors. This is the case, e.g., of SizedSeq
that adds a size parameter to any implementation of Sequences.
Besides SizedSeq, also RevSeq, for Sequences, and MinHeap
for Collections are adaptors for other implementations.

Due to space limitations, we do not present here the com-
plete lists of functions in the respective APIs. This information
is available at green-haskell.github.io.

1) Collections: The Collections abstraction includes sets
and heaps. While all implementations of these data structures
share a significant amount of (reusable and uniform) methods1,
there are also methods that are specific of sets. The intersection
method, for example, operates over two sets and conceptually
only makes sense considering the uniqueness of elements in
each set. A restriction such as this does not make sense to
assume for heaps.

2) Associative Collections: The associative collections ab-
straction includes finite maps and finite relations. They gener-
ically map keys of type k to values of type a. Exceptions are
the PatriciaLoMap and TernaryTrie implementations which
use more restricted types of keys (Int and [k] respectively).
All other implementations respect the same API.

3) Sequences: In Edison, the Sequences abstraction in-
cludes, e.g., lists, queues and stacks. Furthermore, all im-
plementations of the Sequence abstraction define a reusable,
coherent and uniform set of methods.

B. Benchmark
Following the approach considered in different studies [37],

[38], [39], our benchmark is inspired by the microbenchmark
to evaluate the run time performance of Java’s JDK Collection
API implementations [40]. The operations we consider are
listed in Table II, and they all can be abstracted by the format:

iters ∗ operation(base, elems)

1In this paper we refer to functions and methods interchangeably

TABLE II
BENCHMARK OPERATIONS.

iters operation base elems
1 add 100000 100000

1000 addAll 100000 1000
1 clear 100000 n.a.

1000 contains 100000 1
5000 containsAll 100000 1000

1 iterator 100000 n.a.
10000 remove 100000 1

10 removeAll 100000 1000
10 retainAll 100000 1000

5000 toArray 100000 n.a.

This format reads as: iterate operation a given number of
times (iters) over a data structure with a base number of
elements. If operation requires an additional data structure,
the number of elements in it is given by elems. All the
operations are suggested to be executed over a base structure
with 100000 elements. So, the second entry in the table
suggests adding 1000 times all the elements of a structure
with 1000 elements to the base structure (of size 100000).

C. Methodology

Our analysis proceeded by applying the benchmark defined
in the previous section to the different implementations pro-
vided by Edison. For different reasons, we ended up excluding
some implementations from our experimental setting. This was
the case of RevSeq and SizedSeq, for Sequences, and MinHeap

for Heaps, since they are adaptors of other implementations
for the corresponding abstractions. EnumSet, for Sets, was
not considered because it can only hold a limited number of
elements, which makes it not compatible with the considered
benchmark. As said before, PatriciaLoMap and TernaryTrie

are not totally compatible with the Associative Collections API,
so they could not be used in our uniform benchmark. Finally,
MyersStack, for Sequences was discarded since its underlying
data structure has redundant information in such a way that
fully evaluating its instances has exponential behaviour. We
have also split the comparison of Collections in independent
comparisons of Heaps and Sets. This is due to the fact that
these abstractions do not strictly adhere to the same API.

Table III presents the complete list of Edison functions that
were used in the implementation of the benchmark operations.
Most operations in the underlying benchmark have straight-
forward correspondences in the implementation functions pro-
vided by Edison. This is the case, for example, of the operation
add, which can naturally be interpreted by functions insert,
for Heaps, Sets and Associative Collections. For Sequences, the
underlying ordering notion allows two possible interpretations
for adding an element to a sequence: in its beginning or in its
end. In this case, we defined add as follows, to alternatively
use both interpretations:

add :: Seq Int → Int → Int → Seq Int
add seq 0 _ = seq
add seq n m =

let elem = m + n - 1
cons = if even n then rcons else lcons

in add (elem `cons` seq) (n-1) m

4

http://green-haskell.github.io

TABLE III
EDISON FUNCTIONS USED TO IMPLEMENT THE BENCHMARK OPERATIONS.

Sequences Sets Heaps Associative
Collections

add lcons, rcons insert insert insert
addAll append union union union

clear null, ltail difference minView,
delete difference

contains null, filter member member member

containsAll foldr, map subset
null,

member,
minView

submap

iterator map foldr fold map

remove null, ltail deleteMin deleteMin null,
deleteMin

removeAll filter difference minView,
delete difference

retainAll filter intersection filter,
member

intersection-
With

toArray toList foldr fold foldrWithKey

With the previous definition, add s n m inserts the n
elements {n+m-1, n+m-2, ..., m} to s.

In the context of a language with lazy evaluation such as
Haskell, the operations that the benchmark suggests to iterate
a given number of times need to be implemented carefully,
in a way that ensures that the result of each iteration is fully
evaluated. Indeed, while the full evaluation of the final result
can be ensured by the use of Criterion, if the intermediate
ones are not demanded, the lazy evaluation does not build
them. This led us to use primitives such as deepseq [41] in
many definitions. We present an example below, where we
employed deepseq to iterate a number of times the remove
operation for Heaps.

removeNTimes :: Heap Int → Int → Heap Int
removeNTimes h 0 = h
removeNTimes h n

= deepseq (remove h) (removeNTimes h (n - 1))

We have tried to follow as much as possible the data
structure sizes and number of iterations suggested by the
benchmark described in the previous section. In a few cases,
however, we needed to simplify concrete operations for spe-
cific abstractions. This simplification was performed whenever
a concrete operation failed to terminate within a 3 hours bound
for a given implementation. In such cases, we repeatedly
halved the size of the base data structure, starting at 100000,
50000 and so on. When the data structure size of 3125 was
reached without the bound being met, we started reducing the
number of iterations in half. With this principle in mind, no
change was necessary for Heaps and Sets. For Associative

Collections and Sequences, however, this was not the case.
Table IV lists the operations whose inputs or number of
iterations were simplified. The underlined elements of this
table are the ones that differ from the original benchmark.

D. Results

We analyse the results we obtained following the methodol-
ogy described in the previous section. Due to space limitations,
we are not able to include the observed results for all opera-
tions on all abstractions. They are available at the companion
website, at green-haskell.github.io.

TABLE IV
MODIFIED BENCHMARK OPERATIONS.

abstraction iters operation base elems

Associative Collections

1 clear 50000 n.a.
2500 remove 3125 1

10 retainAll 25000 1000
2500 toArray 3125 n.a.

Sequences 1 add 3125 25000
625 containsAll 3125 1000

(a) (b) (c)
Fig. 1. Results of clear operation for Sets

Sets. We have observed that for each combination of imple-
mentation and benchmark operation, taking longer to execute
also implies more energy consumption. The UnbalancedSet

implementation is less efficient (both in terms of runtime
and energy footprint) than StandardSet for all benchmark
operations except contains.

The results on the comparison between both implementa-
tions for the clear operation of the benchmark are presented
in Figure 1. In Figures 1 (a) and (b) we compare the ab-
solute values obtained for the runtime execution and energy
consumption, respectively. In Figure 1 (c) we compare the
proportions of time and energy comsumption: the StandardSet

implementation consumes 29.4% of the time and 27.9% of the
energy spent by UnbalancedSet.

For Sets, for all operations of the benchmark, the differences
between the proportions of either time or energy consumption
are always lower than 1.49%.

Heaps. As we have observed for Sets, our experiments suggest
that energy consumption is proportional to execution time.
Concrete evidence of this is shown in Figures 2 (a) and 2
(b), with the comparison between proportions of runtime and
energy consumption for add and toList, respectively, for each
of the considered implementations.

Overall, the LazyPairingHeap implementation was observed
to be the most efficient in all benchmark operations except for
add. SkewHeap and SplayHeap implementations were the least
efficient in 5 operations each. The proportions of runtime and
energy consumption differ in at most 2.16% for any operation
in any implementation of Heaps.

Associative Collections. Energy consumption was again pro-
portional to execution time. The AssocList implementation was
observed to be less efficient for all but the add and iterator

operations. In the cases where AssocList was less efficient
than StandardMap, the difference ranged from 9%, for addAll
(depicted in Figure 3 (a)), to 99.999% for retainAll. For the

5

http://green-haskell.github.io/

(a) (b)
Fig. 2. Results of add and toList operations for Heaps

(a) (b) (c)
Fig. 3. Results of addAll, add and iterator for Associative Collections

add and iterator operations, illustrated in Figures 3 (b) and
(c), StandardMap took approximately 40% and 85% more
time and energy than AssocList. The proportion of consumed
energy was (marginally, by 1%) higher than the proportion of
execution time only for the add operation.

Sequences. The results obtained for Sequences also show that
execution time strongly influences energy consumption. This is
illustrated in Figure 4 for the remove operation. The observed
proportions across all operations and implementations differ
at most in 1.1%, for the iterator operation.

V. COMPARING CONCURRENT PROGRAMMING
CONSTRUCTS

In this section, we present our second study, which aimed
to assess the energy efficiency of Haskell’s concurrent pro-
gramming constructs. This study is motivated by the following
research questions:
RQ1. Do alternative thread management constructs have dif-

ferent impacts on energy consumption?
RQ2. Do alternative data-sharing primitives have different

impacts on energy consumption?
RQ3. What is the relationship between the number of capa-

bilities and energy consumption?
We start out by briefly presenting the concurrent program-

ming primitives we analyzed in this study (Section V-A).
Section V-B then describes the set of benchmarks that we
used. Since we analyzed multiple variants of each benchmark,

Fig. 4. Results of remove operation for Sequences

Section V-C explains how we adapted them to produce these
variants. Finally, Section V-D presents the results of the study.

A. Concurrency in Haskell

Non-deterministic behavior in Haskell can be implemented
through the use of the IO type. With it, we describe sequences
of operations that can perform IO and emulate mutable be-
havior just like in any imperative programming language. The
IO type also encapsulates computations that are performed
in different threads. To create a new thread, we can choose
between three different functions: forkIO, which creates a new
lightweight thread to be managed by the language’s scheduler;
forkOn, which creates a lightweight thread to be executed on a
specific processor; and forkOS, which creates a thread bound
to the OS’s thread structure.

The number of Haskell threads that can run truly simul-
taneously at any given time is determined by the number
of available capabilities. Capabilities are virtual processors
managed by the Haskell runtime system. Each capability can
run one Haskell thread at a time. A capability is animated by
one or more OS threads. It is possible to configure the number
of capabilities N used by the runtime system.

The basic data sharing primitive of Haskell is MVar. An
MVar can be thought of as a box that is either empty or full.
Haskell provides two main operations to work with MVars:

takeMVar : : MVar a → IO a
putMVar : : MVar a → a → IO ()

Function takeMVar attempts to take a value from an MVar,
returning it wrapped in a value of type IO. The operation
succeeds for full MVars, but blocks for empty ones until they
are filled. Conversely, putMVar attempts to put a value into an
MVar. The operation succeeds for empty MVars, and blocks
for full ones until they are emptied. MVars combine locking
and condition-based synchronization in a single abstraction.

The implementation of software transactional memory for
Haskell, called STM Haskell [44], provides the TVar type to
implement mutable variables that only transactions manipu-
late. The type signatures for STM functions are the following:

readTVar : : TVar a → STM a
wr i t eTVar : : TVar a → a → STM ()
r e t r y : : STM a
takeTMVar : : TMVar a → STM a
putTMVar : : TMVar a → a → STM ()
a t o m i c a l l y : : STM a → IO a

Functions readTVar and writeTVar return and modify the
value of TVars, respectively, and return a value of type

2https://en.wikipedia.org/wiki/FASTA_format

6

TABLE V
THE BENCHMARKS EMPLOYED IN THIS STUDY.

Benchmark Description

chameneos-redux In this benchmark chameneos creatures go to a meeting place and exchange colors with a meeting partner. It encodes
symmetrical cooperation between threads.

fasta
This benchmark generates random DNA sequences and writes it in FASTA format2. The size of the generated DNA
sequences is in the order of hundreds of megabytes. In this benchmark, each worker synchronizes with the previous one
to output the sub-sequences of DNA in the correct order.

k-nucleotide
This benchmark takes a DNA sequence and counts the occurrences and the frequency of nucleotide patterns. This
benchmark employs string manipulation and hashtable updates intensively. There is no synchronization in the program
besides the main thread waiting for the result of each worker.

mandelbrot

A mandelbrot is a mathematical set of points whose boundary is a distinctive and easily recognizable two-dimensional
fractal shape. Mandelbrot set images are created by sampling complex numbers and determining for each one whether
the result tends toward infinity when a particular mathematical operation is iterated on it. The only synchronization point
is the main thread waiting for the result of each worker.

regex-dna This benchmark implements a string-based algorithm that performs multiple regular expression operations, match and
replace, over a DNA sequence. The only synchronization point is the main thread waiting for the result of each worker.

spectral-norm The spectral norm is the maximum singular value of a matrix. Synchronizes workers using a cyclic barrier.

dining-philosophers An implementation of the classical concurrent programming problem posed by Dijkstra. The philosophers perform no
work besides manipulating the forks and printing a message when eating.

tsearch A parallel text search engine. This benchmark searches for occurrences of a sentence in all text files in a directory and
its sub-directories. It is based on a previous empirical study comparing STM and locks [42].

warp
Runs a set of queries against a Warp server retrieving the resulting webpages. Warp is the default web server used by
the Haskell Web Application Interface, part of the Yesod Web Framework. This benchmark was inspired by the Tomcat
benchmark from DaCapo [43].

STM. To run as a transaction, an STM value is executed
by the atomically function. Building upon the definition of
TVars, STM Haskell also provides another type, TMVar, and
corresponding operations for taking values from and putting
values into a TMVar. As the name implies, it is a transactional
variant of the MVar type. Operations on values of type TMVar

produce values of type STM as result.

B. Benchmark

We selected a variety of concurrent Haskell programs to use
as benchmarks in our study. Benchmarks chameneos-redux,
fasta, k-nucleotide, mandelbrot, regex-dna, and spectral-

norm are from The Computer Language Benchmarks Game3

(CLBG). CLBG is a benchmark suite aiming to compare the
performance of various programming languages. Benchmark
dining-philosophers is from Rosetta Code 4, a code repository
of solutions to common programming tasks. Benchmarks
tsearch and warp were developed by us. Table V presents
descriptions for all the benchmarks.

We selected the benchmarks based on their diversity.
For instance, chameneos-redux and dining-philosophers are
synchronization-intensive programs. mandelbrot and spectral-

norm are CPU-intensive and scale well on a multicore ma-
chine. k-nucleotide and regex-dna are CPU- and memory-
intensive, while warp is IO-intensive. tsearch combines IO
and CPU operations, though much of the work it performs
is CPU-intensive. fasta is peculiar in that is CPU-, memory-,
synchronization- and IO-intensive.

Also, some benchmarks have a fixed number of work-
ers (chameneos-redux, k-nucleotide, regex-dna, and dining-

philosophers) and others spawn as many workers as the number
of capabilities (fasta, mandelbrot, spectral-norm, tsearch and

3http://benchmarksgame.alioth.debian.org/
4http://rosettacode.org/

warp). For the dining-philosophers benchmark, it is possible
to establish prior to execution the number of workers.

C. Methodology

In order to use the suite of benchmarks described in the
previous section to analyze the impact of both thread man-
agement constructs and data sharing primitives, we manually
refactored each benchmark to create new variants using dif-
ferent constructs. As a result, each benchmark has up to 9
distinct variants covering a number of different combinations.
It is important to note that there are some cases like dining-

philosophers where not all possible combinations were created.
In this particular implementation, the shared variable is used
also as a condition-based synchronization mechanism. In such
cases, we did not create TVar variants as TMVar mimics
exactly this behavior, while using Haskell’s STM. In other
benchmarks like tsearch and warp we changed only the thread
management construct as they are complex applications and
it wouldn’t be straightforward to change the synchronization
primitives without introducing potencial bugs.

Each variant we created is a standalone executable. This
executable is a Criterion microbenchmark that performs the
experiment by calling the original program entry point multi-
ple times. We run this executable 9 times, each one changing
the number N of capabilities used by the runtime system. We
used the following values for N: {1, 2, 4, 8, 16, 20, 32, 40, 64}.
Where 20 and 40 are the number of physical and virtual cores,
respectively.

D. Results

In this section, we report the results of our experiments
with concurrent Haskell programs. The results are presented in
Figure 5. Here, the odd rows are energy consumption results,
while the even rows are the corresponding running time results.
We omitted the experiments using 64 capabilities in order
to make the charts more readable. The charts including this

7

configuration as well as all the data and source code used in
this study are available at green-haskell.github.io.

Small changes can produce big savings. One of the main
findings of this study is that simple refactorings such as
switching between thread management constructs can have
considerable impact on energy usage. For example, in spectral-

norm, using forkOn instead of forkOS with TVar can save
between 25 and 57% energy, for a number of capabilities
ranging between 2 and 40. Although the savings vary depend-
ing on the number of capabilities, for spectral-norm forkOn

exhibits lower energy usage independently of this number.
For mandelbrot, variants using forkOS and forkOn with MVar

exhibited consistently lower energy consumption than ones
using forkIO, independently of the number of capabilities. For
the forkOS variants, the savings ranged from 5.7 to 15.4%
whereas for forkOn variants the savings ranged from 11.2 to
19.6%.

This finding also applies to data sharing primitives. In
chameneos-redux, switching from TMVar to MVar with
forkOn can yield energy savings of up to 61.2%. Moreover,
it is advantageous to use MVar independently of the number
of capabilities. In a similar vein, in fasta, going from TVar to
MVar with forkIO can produce savings of up to 65.2%. We
further discuss the implications of this finding in Section VI.

Faster is not always greener. Overall, the shapes of the
curves in Figure 5 are similar. Although, for 6 of our 9
benchmarks, in at least two variants of each one, there are
moments where faster running time leads to a higher energy
consumption. For instance, in the forkOn-TMVar variant of
regex-dna, the benchmark is 12% faster when varying the
number of capabilities from 4 to 20 capabilities. But at the
same time, its energy consumption increases by 51% . Also,
changing the number of capabilities from 8 to 16 in the forkIO

variant of tsearch makes it 8% faster and 22% less energy-
efficient.

In one particular benchmark, fasta, we had strongly diver-
gent results in terms of performance and energy consumption
for some of the variants. For this benchmark, the variants em-
ploying TVar outperformed the ones using TMVar and MVar.
For example, when using a number of capabilities equal to the
number of physical cores of the underlying machine (20), the
forkOS-TVar variant was 43.7% faster than the forkOS-MVar

one. At the same time, the TVar variants exhibited the worst
energy consumption. In the aforementioned configuration, the
forkOS-TVar variant consumed 87.4% more energy.

There is no overall winner. Overall, no thread management
construct or data sharing primitive, or combination of both
is the best. For example, the forkIO-TMVar variant is one
of most energy-efficient for dining-philosophers. The forkOS-
TMVar variant consumes more than 6 times more energy.
However, for the chameneos-redux benchmark, the forkIO-
TMVar variant consumes 2.4 times more energy than the
best variant, forkIO-MVar. This example is particularly in-
teresting because these two benchmarks have similar char-
acteristics. Both dining-philosophers and chameneos-redux are

synchronization-intensive benchmarks and both have a fixed
number of worker threads. Even in a scenario like this, using
the same constructs can lead to discrepant results.

Choosing more capabilities than available CPUs is harmful.
The performance of most benchmarks is severely impaired
by using more capabilities than the number of available
CPUs. In chameneos-redux, for example, moving from 40
to 64 capabilities can cause a 13x slowdown. This suggests
that the Haskell runtime system was not designed to handle
cases where capabilities outnumber CPU cores. In fact, this
assumption makes sense as the official GHC documentation
recommends the number of capabilities to match the number
of CPU cores. However, the documentation leaves as an
open question if virtual cores should be counted. In our
experiments, the performance almost never improves after
20 capabilities. So developers should be careful when using
more capabilities than available physical CPU cores as it can
degrade performance.

VI. DISCUSSION

Generally, especially in the sequential benchmarks, high
performance is a proxy for low energy consumption. Our first
study (Section IV) highlighted this for a number of different
data structure implementations and operations. Concurrency
makes the relationship between performance and energy less
obvious, however. Also, there are clear benefits in employ-
ing different thread management constructs and data-sharing
primitives. This section examines this in more detail.

Switching between thread management construct is very
simple in Haskell. Functions forkOn, forkIO, and forkOS take
a computation of type IO as parameter and produce results
of the same type. Thus, the only difficulty is in determining
on which capability a thread created via forkOn will run. This
is good news for developers and maintainers. Considering the
7 benchmarks where we implemented variants using different
data sharing primitives, in 5 of them the thread management
construct had a stronger impact on energy usage than the data
sharing primitives. Furthermore, in these 5 benchmarks and
also in warp it is clearly beneficial to switch between thread
management constructs.

Alternating between data sharing primitives is not as easy,
but still not hard, depending on the characteristics of the pro-
gram to be refactored. Going from MVar to TMVar and back
is straightforward because they have very similar semantics.
The only complication is that, since functions operating on
TMVar produce results of type STM, calls to these functions
must be enclosed in calls to atomically to produce a result of
type IO. Going from MVar to TVar and back is harder, though.
If a program using MVar does not require condition-based
synchronization, it is possible to automate this transformation
in a non-application-dependent manner [45]. If condition-
based synchronization is necessary, such as is the case with
the dining-philosophers benchmark, the semantic differences
between TVar and MVar make it necessary for the maintainer
to understand details of how the application was constructed.

8

http://green-haskell.github.io/

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

chameneos-redux

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

dining-philosophers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

fasta

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

forkOS-MVar
forkOS-TMVar

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar
forkIO-TVar

forkOn-MVar
forkOn-TMVar
forkOn-TVar

forkOS-MVar
forkOS-TMVar
forkOS-TVar

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

k-nucleotide

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

mandelbrot

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

regex-dna

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

forkOS-MVar
forkOS-TMVar

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

forkOS-MVar
forkOS-TMVar

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

forkOS-MVar
forkOS-TMVar

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

spectral-norm

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

tsearch

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1 2 4 8 16 20 32 40

E
n
e
rg

y
 (

J
)

Number of Capabilities

warp

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar
forkIO-TVar

forkOn-MVar
forkOn-TMVar
forkOn-TVar

forkOS-MVar
forkOS-TMVar
forkOS-TVar

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO forkOn forkOS

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 20 32 40

T
im

e
 (

s
e
c
)

Number of Capabilities

forkIO forkOn forkOS

Fig. 5. Energy/Time with alternative concurrency abstractions and varying the number of capabilities

9

In spite of the absence of an overall winning thread man-
agement construct or data-sharing primitive, we can identify
a few cases where a specific approach excels under specific
conditions. For instance, we can see that in both mandelbrot

and spectral-norm, forkOn has a slightly better performance
than forkIO and forkOS. In mandelbrot, the forkOn variants
are around 20% more energy-efficient than the forkIO variants.
In spectral-norm, forkOn can be up to 2x greener than forkOS.
These two benchmarks are both CPU-intensive. They also
create as many threads as the number of capabilities. In a
scenario such as this, a computation-heavy algorithm with few
synchronization points, keeping each thread executing in a
dedicated CPU core is beneficial for the performance. This
is precisely what forkOn does.

Although there is no overall winner, there is a more or less
clear loser, when thread management construct have a strong
impact on energy: forkOS. In only one of the benchmarks the
forkOS variants did not have the worst energy consumption
and worst performance: regex-dna. According to the Haskell

documentation [46], “Using forkOS instead of forkIO makes
no difference at all to the scheduling behavior of the Haskell
runtime system”. If that is the case, the extra time and energy
consumption stem from the need to switch OS threads to
execute work passed to a call to forkOS. This overhead does
not exist for forkOn and forkIO.

VII. THREATS TO VALIDITY

This work focused on the Haskell programming language.
It is possible that its results do not apply to other functional
programming languages, especially considering that Haskell

is one of the few lazy programming languages in existence.
Moreover, we analyzed only the data structures available in
the Edison library and a subset of Haskell’s constructs for
concurrent and parallel programming. It is not possible to
extrapolate the results to other data structure implementations
or to alternative constructs for concurrent and parallel execu-
tion. Nonetheless, our evaluation comprised a large number of
experimental configurations that cover widely-used constructs
of the Haskell language.

It is not possible to generalize the results of the two studies
to other hardware platforms for which Haskell programs can
be compiled. Factors such as operating system scheduling
policies [3] and processor and interconnect layouts [47] can
clearly impact the results. We take a route common in ex-
perimental programming language research, by constructing
experiments over representative system software and hardware,
and the results are empirical by nature. To take a step further,
we have re-executed the experiments in additional hardware
configurations. The primary goal is to understand the stability
and portability of our results. These additional experiments
targeted both studies. For the first study, the conclusions we
have drawn in the paper are consistent with the results we
obtained on one different machine, a 4-core Intel Core i7-
4790 (Haswell) with 16 GB of DDR 1600 running openSUSE
13.2 and GHC 7.10.2.

For the second study, we ran some of the benchmarks on
another machine, a 4-core Intel i7-3770 (IvyBridge) with 8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8

E
n

e
rg

y
 (

J
)

Number of Capabilities

mandelbrot

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8

T
im

e
 (

s
e

c
)

Number of Capabilities

forkIO-MVar
forkIO-TMVar

forkOn-MVar
forkOn-TMVar

forkOS-MVar
forkOS-TMVar

Fig. 6. Energy/Time on Alternative Platform

GB of DDR 1600 runing Ubuntu Server 14.04.3 LTS (kernel
3.19.0-25) and GHC 7.10.2. Figure 6 shows the results of
mandelbrot running on this i7 machine. The results show
analogous trends in which the curves have similar shapes to
the results of Figure 5. The same trend can be observed for
the remaining benchmarks.

It is also not possible to generalize the results to other
versions of GHC. Changes in the runtime system, for example,
can lead to different results. This work also did not explore
the influence of the various compiler and runtime settings of
GHC. As the options range from GC algorithms to scheduling
behaviour, it can have a significant impact on performance,
especially for concurrency. For the benchmarks we developed,
we used the default settings of GHC. For the ones from
CLBG, we used the same settings used there to preserve the
performance characteristics intended by the developers.

One further threat is related to our measurement approach
We have employed RAPL to measure energy consumption.
Thus, the results could be different for external measurement
equipment. Nonetheless, previous work [48] has compared the
accuracy of RAPL with that of an external energy monitor and
the results are consistent.

VIII. CONCLUSIONS

As energy efficiency becomes a popular concern for soft-
ware developers, we must be aware of the implications of our
development decisions in our applications energy footprint. In
this paper, we analyzed a relevant subset of those decisions
for a purely functional programming language, Haskell. We
found that for sequential Haskell programs, execution time
can be a good proxy for energy consumption. However,
when considering concurrency, we found no silver bullet. In
one scenario, choosing MVars over TMVars can save 60%
in energy, while in another, TMVars can yield up to 30%
energy savings over MVars, and performance is not always
a good indicator. We have extended two tools for helping
developers test their programs energy footprint: the Criterion

benchmarking library, and the profiler that comes with GHC.

IX. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their helpful comments. Fernando is supported by CN-
Pq/Brazil (304755/2014-1, 487549/2012-0 and 477139/2013-
2), FACEPE/Brazil (APQ- 0839-1.03/14) and INES (CNPq
573964/2008-4, FACEPE APQ-1037-1.03/08, and FACEPE
APQ-0388-1.03/14). Any opinions expressed here are from
the authors and do not necessarily reflect the views of the
sponsors.

10

REFERENCES

[1] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital
design,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 4, pp. 473–
484, Apr 1992.

[2] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4,
pp. 437–445, Dec 1994.

[3] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles. ACM, 2003, pp.
149–163.

[4] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodríguez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The karlskrona manifesto
for sustainability design,” CoRR, vol. abs/1410.6968, 2014.

[5] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause, “How
does code obfuscation impact energy usage?” in 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, 2014, pp. 131–140.

[6] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. D.
Penta, and D. Poshyvanyk, “Mining energy-greedy API usage patterns
in android apps: an empirical study,” in 11th Working Conference on
Mining Software Repositories, MSR 2014, Proceedings, May 31 - June
1, 2014, Hyderabad, India, 2014, pp. 2–11.

[7] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2014,
pp. 36:1–36:10.

[8] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors
of thread management constructs,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA ’14. New York, NY,
USA: ACM, 2014, pp. 345–360.

[9] K. Liu, G. Pinto, and Y. Liu, “Data-oriented characterization of
application-level energy optimization,” in Proceedings of the 18th In-
ternational Conference on Fundamental Approaches to Software Engi-
neering, ser. Lecture Notes in Computer Science, vol. 9033, 2015, pp.
316–331.

[10] B. Pierce, “Type operators and kinding,” in Types and Programming
Languages. MIT Press, 2002, ch. 29.

[11] S. Marlow, L. Brandy, J. Coens, and J. Purdy, “There is no fork: An
abstraction for efficient, concurrent, and concise data access,” SIGPLAN
Not., vol. 49, no. 9, pp. 325–337, Aug. 2014.

[12] O. Corporation. What’s new in jdk 8? [Online]. Available: http:
//www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

[13] A. Hejlsberg and M. Torgersen. Overview of c# 3.0. [Online]. Available:
https://msdn.microsoft.com/en-us/library/bb308966.aspx

[14] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444 – 449, 2013.

[15] C. Okasaki, “An overview of edison,” Electronic Notes in Theoretical
Computer Science, vol. 41, no. 1, pp. 60–73, 2001.

[16] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how we
know it,” Software Engineering, IEEE Transactions on, vol. 38, no. 1,
pp. 5–18, Jan 2012.

[17] D. Dig, J. Marrero, and M. D. Ernst, “How do programs become more
concurrent: a story of program transformations,” in Proceedings of the
4th International Workshop on Multicore Software Engineering, ser.
IWMSE. ACM, 2011.

[18] H. Li, S. Thompson, and C. Reinke, “The Haskell Refactorer, HaRe,
and its API,” Electron. Notes Theor. Comput. Sci., vol. 141, no. 4, pp.
29–34, dec 2005.

[19] D. Y. Lee, “A case study on refactoring in haskell programs,” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
ser. ICSE. ACM, 2011.

[20] C. Brown, H.-W. Loidl, and K. Hammond, “ParaForming: forming
parallel haskell programs using novel refactoring techniques,” in Pro-
ceedings of the 12th international conference on Trends in Functional
Programming, ser. TFP’11. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 82–97.

[21] A. Hindle, “Green mining: A methodology of relating software change
to power consumption,” in Mining Software Repositories (MSR), 2012
9th IEEE Working Conference on, June 2012, pp. 78–87.

[22] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. New York, NY, USA: ACM, 2014, pp. 36:1–36:10.

[23] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of mo-
bile applications behind the scenes,” in Software Maintenance (ICSM),
2013 29th IEEE International Conference on, Sept 2013, pp. 170–179.

[24] G. Scanniello, U. Erra, G. Caggianese, and C. Gravino, “On the effect of
exploiting gpus for a more eco-sustainable lease of life,” International
Journal of Software Engineering and Knowledge Engineering, vol. 25,
no. 01, pp. 169–195, 2015.

[25] I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining energy-aware
commits,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, ser. MSR ’15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 56–67.

[26] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, ser. GECCO ’15.
New York, NY, USA: ACM, 2015, pp. 1327–1334.

[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
memory power estimation and capping,” in Low-Power Electronics and
Design (ISLPED), 2010 ACM/IEEE International Symposium on. IEEE,
2010, pp. 189–194.

[28] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on. IEEE, 2012, pp. 262–268.

[29] E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan, and E. Weiss-
mann, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” IEEE Micro, no. 2, pp. 20–27, 2012.

[30] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 3, pp. 13–17, 2012.

[31] B. O’Sullivan. (2009) criterion: Robust, reliable performance
measurement and analysis. [Online]. Available: http://www.serpentine.
com/criterion/

[32] P. M. Sansom and S. L. Peyton Jones, “Time and space profiling for
non-strict, higher-order functional languages,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1995, pp. 355–366.

[33] C. Okasaki, Purely functional data structures. Cambridge University
Press, 1999.

[34] R. Dockins. Edison, Haskell Communities and Activities Report 2009.
[Online]. Available: https://www.haskell.org/communities/05-2009/html/
report.html

[35] ——. Edisoncore package. [Online]. Available: http://hackage.haskell.
org/package/EdisonCore-1.3

[36] ——. Edisonapi package. [Online]. Available: http://hackage.haskell.
org/package/EdisonAPI-1.3

[37] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
ACM, 2014, pp. 503–514.

[38] T. Carção, “Spectrum-based energy leak localization,” Master’s thesis,
University of Minho, Portugal, 2014.

[39] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive study on
the energy efficiency of java thread-safe collections,” Journal of Systems
and Software, 2016, to appear.

[40] L. Lewis. (2011) Java collection performance. [Online]. Available:
http://dzone.com/articles/java-collection-performance

[41] deepseq package. [Online]. Available: http://hackage.haskell.org/
package/deepseq

[42] V. Pankratius and A.-R. Adl-Tabatabai, “A study of transactional mem-
ory vs. locks in practice,” in Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures. ACM, 2011,
pp. 43–52.

[43] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The dacapo benchmarks: Java benchmarking development and analy-
sis,” in Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications.
ACM, 2006, pp. 169–190.

11

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://msdn.microsoft.com/en-us/library/bb308966.aspx
http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/
https://www.haskell.org/communities/05-2009/html/report.html
https://www.haskell.org/communities/05-2009/html/report.html
http://hackage.haskell.org/package/EdisonCore-1.3
http://hackage.haskell.org/package/EdisonCore-1.3
http://hackage.haskell.org/package/EdisonAPI-1.3
http://hackage.haskell.org/package/EdisonAPI-1.3
http://dzone.com/articles/java-collection-performance
http://hackage.haskell.org/package/deepseq
http://hackage.haskell.org/package/deepseq

[44] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in Proceedings of the 10th PPoPP, 2005.

[45] F. Soares-Neto, “Rewriting concurrent haskell programs to stm,” Mas-
ter’s thesis, Federal University of Pernambuco, February 2014.

[46] forkos documentation. [Online]. Available: https://hackage.haskell.org/
package/base-4.8.1.0/docs/Control-Concurrent.html#v:forkOS

[47] A. Solernou, J. Thiyagalingam, M. C. Duta, and A. E. Trefethen, “The
effect of topology-aware process and thread placement on performance
and energy,” in 28th International Supercomputing Conference, 2013,
pp. 357–371.

[48] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 3, pp. 13–17, Jan. 2012.

12

https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#v:forkOS
https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#v:forkOS

