
Using Automatic Refactoring to Improve Energy
Efficiency of Android Apps

Luis Cruz1 and Rui Abreu2

1 University of Porto / HASLab, INESC TEC, luiscruz@fe.up.pt
2 Instituto Superior Técnico, University of Lisbon / INESC-ID, rui@computer.org

Abstract. The ever-growing popularity of mobile phones has brought
additional challenges to the software development lifecycle. Mobile ap-
plications (apps, for short) ought to provide the same set of features as
conventional software, with limited resources: such as, limited process-
ing capabilities, storage, screen and, not less important, power source.
Although energy efficiency is a valuable requirement, developers often
lack knowledge of best practices. In this paper, we study whether or not
automatic refactoring can aid developers ship energy efficient apps. We
leverage a tool, Leafactor, with five energy code smells that tend to go
unnoticed. We use Leafactor to analyze code smells in 140 free and open
source apps. As a result, we detected and fixed code smells in 45 apps,
from which 40% have successfully merged our changes into the official
repository.

1 Introduction

In the past decade, the advent of mobile devices has brought new challenges and
paradigms to the existing computing models. One of the major challenges is the
fact that mobile phones have a limited battery life. As a consequence, users need
to frequently charge their devices to prevent their inoperability. Hence, energy
efficiency is an important non-functional requirement in mobile software, with a
valuable impact on usability.

A study in 2013 reported that 18% of apps have feedback from users that is
related with energy consumption [25]. Other studies have nonetheless found that
most developers lack the knowledge about best practices for energy efficiency in
mobile applications (apps) [17, 23]. Hence, it is important to provide developers
with actionable documentation and toolsets that aim to help deliver energy
efficient apps.

Previously, we have identified code optimizations with significant impact on
the energy consumption of Android apps [4]. However, certify that code is com-
plying with these patterns is time-consuming and prone to errors. Thus, in this
paper we study how automatic refactor can help develop code that follows energy
best practices.

There are state-of-the-art tools that provide automatic refactoring for An-
droid and Java apps (for instance, AutoRefactor3, Walkmod4, Facebook pfff 5,
Kadabra6). Although these tools help developers creating better code, they do
not feature energy related patterns for Android. Thus, we leverage five energy
optimizations in an automatic refactoring tool, Leafactor , which is publicly avail-
able with an open source license. In addition, the toolset has the potential to
serve as an educative tool to aid developers in understanding which practices
can be used to improve energy efficiency.

On top of that, we analyze how Android developers are addressing energy
optimizations and how an automatic refactoring tool would help ship more en-
ergy efficient mobile software. We have used the results of our tool to contribute
to real Android app projects, validating the value of adopting an automatic
refactoring tool in the development stack of mobile apps.

In a dataset of 140 free and open source software (FOSS) Android apps, we
have found that a considerable part (32%) is released with energy inefficiencies.
We have fixed 222 anti patterns in 45 apps, from which 18 have successfully
merged our changes into the official branch. Results show that automatic refac-
toring tools can be very helpful to improve the energy footprint of apps.

This work is an extension of a previous two-page tooldemo that introduces
Leafactor [5]. The remainder of this paper is organized as follows: Section 2
details energy refactorings and corresponding impact on energy consumption;
in Section 3, we present the automatic refactor toolset that was implemented;
Section 4 describes the experimental methodology used to validate our tool,
followed by Sections 5 and 6 with results and discussion; in Section 7 we present
the related work in this field; and finally Section 8 summarizes our findings and
discusses future work.

2 Energy Refactorings

We use static code analysis and automatic refactoring to apply Android-specific
optimizations of energy efficiency. In this section, we describe refactorings which
are known to improve energy consumption of Android apps [4]. Each of them
has an indication of the energy efficiency improvement (¨) and the fix priority
provided by the official lint documentation7. The priority reflects the severity
of a pattern in terms of performance and is given in a scale of 1 to 10, with
10 being the most severe. The severity is not necessarily correlated with energy
performance. In addition, we also provide examples where the refactorings are
applied. All refactorings are in Java with the exception ObsoleteLayoutParam
which is in XML — the markup language used in Android to define the user
interface (UI).

3 AutoRefactor : https://goo.gl/v5im9X (March 2, 2018).
4 Walkmod : https://goo.gl/LmsUDX (March 2, 2018).
5 Facebook pfff : https://goo.gl/NG1PTE (March 2, 2018).
6 Kadabra: https://goo.gl/A5PsZf (March 2, 2018).
7 Lint is a tool provided with the Android SDK which detects problems related with

the structural quality of the code. Website: https://goo.gl/RA2EVC (March 2, 2018).

2.1 ViewHolder: View Holder Candidates

Energy efficiency improvement (¨): 4.5%. Lint priority: |||||||||| 5/10.
This pattern is used to make a smoother scroll in List Views, with no lags.

When in a List View, the system has to draw each item separately. To make this
process more efficient, data from the previous drawn item should be reused. This
technique decreases the number of calls to the method findViewById(), which
is known for being a very inefficient method [14]. The following code snippet
provides an example of how to apply ViewHolder.

// ...
@Override
public View getView(final int position , View convertView , ViewGroup parent) {

convertView = LayoutInflater.from(getContext ()).inflate(¶
R.layout.subforsublist , parent , false

);
final TextView t = ((TextView) convertView.findViewById(R.id.name)); ·

// ...

Optimized version:

// ...
private static class ViewHolderItem { ¸

private TextView t;
}

@Override
public View getView(final int position , View convertView , ViewGroup parent) {

ViewHolderItem viewHolderItem;
if (convertView == null) { ¹

convertView = LayoutInflater.from(getContext ()).inflate(
R.layout.subforsublist , parent , false

);
viewHolderItem = new ViewHolderItem ();
viewHolderItem.t = ((TextView) convertView.findViewById(R.id.name));
convertView.setTag(viewHolderItem);

} else {
viewHolderItem = (ViewHolderItem) convertView.getTag ();

}
final TextView t = viewHolderItem.t; º

// ...

¶ In every iteration of the method getView, a new LayoutInflater object
is instantiated, overwriting the method’s parameter convertView.

· Each item in the list has a view to display text — a TextView object. This
view is being fetched in every iteration, using the method findViewById().

¸ A new class is created to cache common data between list items. It will
be used to store the TextView object and prevent it from being fetched in every
iteration.

¹ This block will run only in the first item of the list. Subsequent iterations
will receive the convertView from parameters.

º It is no longer needed to call findViewById() to retrieve the TextView

object.
One might argue that the version of the code after refactoring is considerably

less intuitive. This is in fact true, which might be a reason for developers to ignore
optimizations. However, regardless of whether this optimization should be taken

care by the system, it is the recommended approach, as stated in the Android
official documentation8.

2.2 DrawAllocation: Allocations within drawing code

¨ 1.5%. Lint priority: |||||||||| 9/10.

Draw operations are very sensitive to performance. It is a bad practice al-
locating objects during such operations since it can create noticeable lags. The
recommended fix is allocating objects upfront and reusing them for each drawing
operation, as shown in the following example:

public class DrawAllocationSampleTwo extends Button {
public DrawAllocationSampleTwo(Context context) {

super(context);
}
@Override
protected void onDraw(android.graphics.Canvas canvas) {

super.onDraw(canvas);
Integer i = new Integer (5);¶
// ...
return;

}
}

Optimized version:

public class DrawAllocationSampleTwo extends Button {
public DrawAllocationSampleTwo(Context context) {

super(context);
}
Integer i = new Integer (5);·
@Override
protected void onDraw(android.graphics.Canvas canvas) {

super.onDraw(canvas);
// ...
return;

}
}

¶ A new instance of Integer is created in every execution of onDraw.

· The allocation of the instance of Integer is removed from the drawing
operation and is now executed only once during the app execution.

2.3 WakeLock: Incorrect wake lock usage

¨ 1.5%. Lint priority: |||||||||| 9/10.

Wake locks are mechanisms to control the power state of a mobile device.
This can be used to prevent the screen or the CPU from entering a sleep state.
If an application fails to release a wake lock, or uses it without being strictly
necessary, it can drain the battery of the device.

The following example shows an Activity that uses a wake lock:

8 ViewHolder explanation in the official documentation: https://goo.gl/tgy7xL visited
in March 2, 2018.

extends Activity { private WakeLock wl;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

PowerManager pm = (PowerManager) this.getSystemService(
Context.POWER_SERVICE

);
wl = pm.newWakeLock(

PowerManager.SCREEN_DIM_WAKE_LOCK | PowerManager.ON_AFTER_RELEASE ,
"WakeLockSample"

);
wl.acquire ();¶

}
}

¶ Using the method acquire() the app asks the device to stay on. Until
further instruction, the device will be deprived of sleep.

Since no instruction is stopping this behavior, the device will not be able to
enter a sleep mode. Although in exceptional cases this might be intentional, it
should be fixed to prevent battery drain.

The recommended fix is to override the method onPause() in the activity:

//...
@Override protected void onPause (){

super.onPause ();
if (wl != null && !wl.isHeld ()) {

wl.release ();
}

}
//...

With this solution, the lock is released before the app switches to background.

2.4 Recycle: Missing recycle() calls

¨ 0.7%. Lint priority: |||||||||| 7/10.
There are collections such as TypedArray that are implemented using single-

ton resources. Hence, they should be released so that calls to different TypedArray
objects can efficiently use these same resources. The same applies to other classes
(e.g., database cursors, motion events, etc.).

The following snippet shows an object of TypedArray that is not being re-
cycled after use:

public void wrong1(AttributeSet attrs , int defStyle) {
final TypedArray a = getContext ().obtainStyledAttributes(

attrs , new int[] { 0 }, defStyle , 0
);
String example = a.getString (0);

}

Solution:

public void wrong1(AttributeSet attrs , int defStyle) {
final TypedArray a = getContext ().obtainStyledAttributes(

attrs , new int[] { 0 }, defStyle , 0
);
String example = a.getString (0);

if (a != null) {
a.recycle ();¶

}
}

¶ Calling the method recycle() when the object is no longer needed, fixes
the issue. The call is encapsulated in a conditional block for safety reasons.

2.5 ObsoleteLayoutParam (OLP): Obsolete layout params

¨ 0.7%. Lint priority: |||||||||| 6/10.
During development, UI views might be refactored several times. In this

process, some parameters might be left unchanged even when they have no effect
in the view. This causes useless attribute processing at runtime. As example,
consider the following code snippet (XML):

<LinearLayout >
<TextView android:id="@+id/name"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"> /* DeleteMe */ ¶

</TextView >
</LinearLayout >

¶ The property android:layout alignParentBottom is used for views in-
side a RelativeLayout to align the bottom edge of a view (i.e., the TextView,
in this example) with the bottom edge of the RelativeLayout. On contrary,
LinearLayout is not compatible with this property, having no effect in this
example. It is safe to remove the property from the specification.

3 Automatic Refactoring Tool

In the scope of our study, we developed a tool to statically analyze and transform
code, implementing Android-specific energy-efficiency optimizations — Leafac-
tor . The toolset receives a single file, a package, or a whole Android project as
input and looks for eligible files, i.e., Java or XML source files. It automatically
analyzes those files and generates a new compilable and optimized version.

AutoRefactor

Java
files

XML
files

Java Refactor
Engine

XML Refactor
Engine

Android Project

>_ CLIPlugin UI

Fig. 1. Architecture diagram of the automatic refactoring toolset.

The architecture of Leafactor is depicted in Figure 1. There are two separate
engines: one to handle Java files and another to handle XML files. The refactoring

engine for Java is implemented as part of the open-source project AutoRefactor
— an Eclipse plugin to automatically refactor Java code bases.

AutoRefactor provides a comprehensive set of common code cleanups to help
deliver “smaller, more maintainable and more expressive code bases”9. Eclipse
Marketplace10 reported 2884 successful installs of AutoRefactor. A common use
case is presented in the screenshot of Figure 2. Under the hood, AutoRefactor
integrates a handy and concise API to manipulate Java Abstract Syntax Trees
(ASTs). We contributed to the project by implementing the Java refactorings
mentioned in Section 2.

Fig. 2. Developers can apply refactoring by selecting the “Automatic refactoring” op-
tion or by using the key combination + + Y .

Since XML refactorings are not supported by AutoRefactor, a separate refac-
toring engine was developed and integrated in Leafactor . As detailed in the pre-
vious section, only a single XML refactoring is offered — ObsoleteLayoutParam.

4 Empirical evaluation

We designed an experiment with the following goals:

– Study the benefits of using an automatic refactoring tool within the Android
development community.

– Study how FOSS Android apps are adopting energy efficiency optimizations.
– Improve energy efficiency of FOSS Android apps.

9 As described in the official website, visited in March 2, 2018: https://goo.gl/v5im9X
10 Eclipse Marketplace is an interface for browsing and installing plugins for the Java

IDE Eclipse: https://goo.gl/QkTcWm visited in March 2, 2018.

7. Commit &
push changes

1. Collect metadata
from F-droid

2. Fork
repository

3. Select
optimization

4. Create
branch

5. Apply
Leafactor

6. Validate
changes

8. Submit
PR

Fig. 3. Experiment’s procedure for a single app.

M
u

lt
im

ed
ia

S
ec

u
ri

ty

P
h

o
n

e&
S

M
S

T
h

em
in

g

M
o
n

ey

D
ev

el
o
p

m
en

t

In
te

rn
et

S
y
st

em

G
a
m

es

R
ea

d
in

g

C
o
n

n
ec

ti
v
it

y

S
p

o
rt

s&
H

ea
lt

h

W
ri

ti
n

g

S
ci

en
ce

&
E

d
u

.

T
im

e

N
av

ig
a
ti

o
n

0

2

4

6

8

10

8

2
1

2
33

9

5

3
4

1

3
22

11

Categories

N
u

m
b

er
o
f

a
p

p
s

Fig. 4. Number of apps per category in the dataset.

We adopted the procedure explained in Figure 3. Starting with step 1, we
collect data from the F-droid app store11 — a catalog for free and open-source
software (FOSS) applications for the Android platform. For each app we collect
the git repository location which is used in step 2 to fork the repository and
prepare it for a potential contribution in the app’s official project. Following,
in step 3 we select one refactoring to be applied and consequently initiate a
process that is repeated for all refactorings (steps 4–8): the project is analyzed
and, if any transformation is applied, a new Pull Request (PR) is submitted to be
considered by the project’s integrator. Since we wanted to engage the community
and get feedback about the refactorings, we manually created each PR with a
personalized message, including a brief explanation of commited code changes.

We analyze 140 free and open-source Android apps collected from F-droid12.
Apps are selected by date of publish (i.e., it was given priority to newly released
apps), considering exclusively Java projects (e.g., Kotlin projects are filtered
out) with a Github repository. We select only one git service for the sake of
simplicity. Apps in the dataset are spread in 17 different categories, as depicted
in Figure 4.

11 F-droid repository is available at https://goo.gl/cj8fC8 visited in March 2, 2018.
12 Data was collected in Nov 27, 2016 and it is available here: https://goo.gl/CrmUEz

The largest project in terms of Java files is TinyTravelTracker (1878), while
NewsBlue is the largest in terms of XML files (2109). Table 1 presents descriptive
statistics for the source code and repository of the projects in the dataset. In
total we analyzed 6.79GB of Android projects in 4.5 hours, totaling 15308 Java
files and 15103 XML files.

Table 1. Descriptive statistics of projects in the dataset.

Java Files XML Files Github Forks Github Stars Contributors

Mean 103 102 65 179 15
Min 0 4 0 0 1
25% 13 23 3.75 7.75 2
Median 38 48 9 24 3
75% 106 97 39 111 10
Max 1678 2109 1483 4488 323
Total 15308 15103 9547 26484 2162

5 Results

Our experiment yielded a total of 222 refactorings, which were submitted to the
original repositories as PRs. Multiple refactorings of the same type were grouped
in a single PR to avoid creating too many PRs for a single app. It resulted in 59
PRs spread across 45 apps. This is a demanding process, since each project has
different contributing guidelines. Nevertheless, by the time of writing, 18 apps
had successfully merged our contributions for deployment.

Table 2. Summary of refactoring results

Refactoring ViewHolder DrawAllocation Wakelock Recycle OLP∗ Any

Total Refactorings 7 0 1 58 156 222
Total Projects 5 0 1 23 30 45
Percentage of Projects 4% 0% 1% 16% 21% 32%
Incidence per Project 1.4× - 1.0× 2.5× 5.2× 4.8×
∗OLP — ObsoleteLayoutParam

Table 2 presents the results for each refactoring. It shows the total number
of applied refactorings, the total number of projects that were affected, the per-
centage of affected projects, and the average number of refactorings per affected
project.

ObsoleteLayoutParam was the most frequent pattern. It was applied 156
times in a total of 30 projects out of the 140 in our dataset (21%). In average,
each affected project had 5 occurrences of this pattern. Recycle comes next,
occurring in 16% of projects (58 refactorings). DrawAllocation and Wakelock
only showed marginal impact. In addition, Table 2 also presents the combined
results for the occurrence of any type of refactoring (Any). In addition, Figure 5

W
ak

el
oc

k

R
ec

yc
le

D
ra

w
A
llo

ca
tio

n

V
ie
w
H
ol
de

r
O
LP

A
ny

0

20

40

1

23

0
5

30

45

N
u
m

b
er

o
f

a
p
p
s

a
ff

ec
te

d

Fig. 5. Number of apps affected per refactoring.

presents a plot bar summarizing the number of projects affected amongst all the
studied refactorings.

For reproducibility and a clarity of results, all the data collected in this study
is publicly available13. All the PRs are public and can be accessed through
the official repositories of the apps. As example, the PR for the refactoring
ViewHolder performed in the app Slide14 can be found in the Github project
ccrama/Slide with reference #234615.

6 Discussion

Results show that an automatic refactoring tool can help developers ship more
energy efficient apps. A considerable part of apps in this study (32%) had at least
one energy inefficiency. Since these inefficiencies are only visible after long peri-
ods of app activity they can easily go unnoticed. From the feedback developers
provided in the PRs, we have noticed that developers are open to recommenda-
tions from an automated tool. Only in a few exceptions, developers expressed
being unhappy with our contributions. Most developers were curious about the
refactorings and they recognized being unaware of their impact on energy effi-
ciency. This is consistent with previous work [17, 23].

In a few cases, code smells were found in code that does not affect the en-
ergy consumption of the app itself (e.g., test code). In those cases, our PRs were
not merged. Nevertheless, we recommend consistently complying with these op-
timizations in all types of code since new developers often use tests to help
understand how to contribute to a project.

The code smell related with ObsoleteLayoutParam was found in a consider-
able fraction of projects (21%). This relates with the fact that app views are

13 Spreadsheet with all experimental results: https://goo.gl/CrmUEz.
14 Slide’s website: https://goo.gl/8HuJ6g visited in March 2, 2018.
15 PR of the ViewHolder of app Slide: https://goo.gl/P2gFBx visited in March 2, 2018.

often created in an iterative process with several rounds of trial and error. Since
some parameters have no effect under very specific contexts, useless lines of
specification can go unnoticed by developers.

Recycle is frequent too, being observed in 16% of projects. This pattern is
found in Android API objects that can be found in most projects (e.g., database
cursors). Although a clean fix is to use the Java try-with-resources statement16,
it requires version 19 or earlier of Android SDK (introduced with Android 4.4
Kitkat). However, developers resort to a more verbose approach for backwards
compatibility which requires explicitly closing resources, hence prone to mis-
takes.

Our DrawAllocation checker did not yield any result. It was expected that de-
velopers were already aware of DrawAllocation. Still, we were able to manually
spot allocations that were happening inside a drawing routine. Nevertheless,
those allocations are using dynamic values to initialize the object. In our im-
plementation, we scope only allocations that will not change between iterations.
Covering those missed cases would require updating the allocated object in every
iteration. While spotting these cases is relatively easy, refactoring would require
better knowledge of the class that is being instantiated. Similarly, WakeLocks
are very complex mechanisms and fixing all misuses still requires further work.

In the case of ViewHolder, although it only impacted 4% of the projects, we
believe it has to do with the fact that 1) some developers already know this
pattern due to its performance impact, and 2) many projects do not implement
dynamic list views. ViewHolder is the most complex pattern we have in terms
of lines of code (LOC) — a simple case can require changes in roughly 35 LOC.
Although changes are easily understandable by developers, writing code that
complies with ViewHolder pattern is not intuitive.

A positive outcome of our experimentation was that we were able to improve
energy efficiency in the official release of 18 Android apps.

7 Related Work

Energy efficiency of mobile apps is being addressed with many different ap-
proaches. Some works opt by simplifying the process of measuring energy con-
sumption of mobile apps [26, 18, 19, 9, 6, 3]. Alternatively, other works study the
energy footprint of software design choices and code patterns that will prevent
developers from creating code with poor energy efficiency [13, 11, 12, 15, 16, 20].

Automatic detection of anti-patterns for Android has been studied before.
Fixing code smells in Android has shown gains up to 5% in energy efficiency [4].
Code was manually refactored in six real apps and energy consumption was mea-
sured using an hardware based power monitor. Our work extends this research
by providing automatic refactoring to the resulting energy code smells.

The frequency of anti-patterns in Android apps was studied in previous work
[10]. Patterns were automatically detected in 15 apps using the tool Paprika

16 Documentation about the Java try-with-resources statement:
https://goo.gl/5TmSkc visited in March 2, 2018.

which was developed to perform static analysis in the bytecode of apps. Although
Paprika provides valuable feedback on how to fix their code, developers need to
manually apply the refactorings. Our study differs by focusing on energy related
anti-patterns and by applying automatic refactoring to resolve potential issues.

Previous work has also studied the importance of providing a catalogue of
bad smells that negatively influence specific quality requirements, such as en-
ergy efficiency [22, 21]. Although the authors motivate the importance of using
automatic refactoring, their approach lacks an extensive implementation of their
catalogue. In this work, we validate our refactorings by applying Leafactor in a
large dataset of real Android apps. Moreover, we assess how automatic refactor-
ing tools for energy can positively impact the Android FOSS community.

Other works have detected energy related code smells by analyzing source
code as TGraphs [8, 7]. Eight different code smell detectors were implemented
and validated with a navigation app. Fixing the code with automatic refactoring
was discussed but not implemented. In addition, although studied code smells
are likely to have an impact on energy consumption, no evidence was presented.

Previous work have used the event flow graph of the app to optimize re-
source usage (e.g., GPS, Bluetooth) [2]. Results show significant gains in energy
efficiency. Nevertheless, although this process provides details on how to fix the
code, it is not fully automated yet.

Other works have studied and applied automatic refactorings in Android
applications [23, 24]. However, these optimizations were not mobile specific.

Besides refactoring source code, other works have focused in studying the
impact of UI design decisions on energy consumption [15]. Agolli, T., et al. have
proposed a methodology that suggests changes in the UI colors of apps. The new
UI colors, despite being different, are almost imperceptible by users and lead to
savings in the energy consumption of mobile phones’ displays [1]. In our work,
we strictly focus on changes that do not change the appearance of the app.

8 Conclusion

Our work shows the potential of using automatic refactoring tools to improve
energy efficiency of mobile applications. We have analyzed 140 FOSS Android
apps and as an outcome we have fixed 222 energy related anti-patterns. In total,
we improved the energy footprint of 45 apps.

As future work, we plan to study and support more energy refactorings. In
addition, it would be interesting to integrate automatic refactoring in a continu-
ous integration context. The integration would require two distinct steps: one for
the detection and another for the code refactoring which would only be applied
upon a granting action by a developer. One could also use this idea with an edu-
cational purpose. A detailed explanation of the code transformation along with
its impact on energy efficiency could be provided whenever a developer pushes
new changes to the repository.

Acknowledgments

This work is financed by the ERDF European Regional Development Fund through
the Operational Program for Competitiveness and Internationalization - COMPETE
2020 Program and by National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-016718.
Luis Cruz is sponsored by an FCT scholarship grant number PD/BD/52237/2013.

References

1. Agolli, T., Pollock, L., Clause, J.: Investigating decreasing energy usage in mobile
apps via indistinguishable color changes. In: Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems. pp. 30–34. IEEE Press
(2017)

2. Banerjee, A., Roychoudhury, A.: Automated re-factoring of android apps to en-
hance energy-efficiency. In: Proceedings of the International Workshop on Mobile
Software Engineering and Systems. pp. 139–150. ACM (2016)

3. Couto, M., Carção, T., Cunha, J., Fernandes, J.P., Saraiva, J.: Detecting anoma-
lous energy consumption in android applications. In: Brazilian Symposium on Pro-
gramming Languages. pp. 77–91. Springer (2014)

4. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile ap-
plications. In: Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems. pp. 46–57. IEEE Press (2017)

5. Cruz, L., Abreu, R., Rouvignac, J.N.: Leafactor: Improving energy efficiency of
android apps via automatic refactoring. In: Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems. pp. 205–206. MOBILE-
Soft ’17, IEEE Press (2017)

6. Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaidman, A., De Lucia, A.:
Petra: a software-based tool for estimating the energy profile of android applica-
tions. In: Proceedings of the 39th International Conference on Software Engineering
Companion. pp. 3–6. IEEE Press (2017)

7. Ebert, J., Riediger, V., Winter, A.: Graph technology in reverse engineering–the
tgraph approach. In: Proc. 10th Workshop Software Reengineering. GI Lecture
Notes in Informatics. Citeseer (2008)

8. Gottschalk, M., Josefiok, M., Jelschen, J., Winter, A.: Removing energy code smells
with reengineering services. GI-Jahrestagung 208, 441–455 (2012)

9. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: Software Engineering (ICSE), 2013 35th
International Conference on. pp. 92–101. IEEE (2013)

10. Hecht, G., Rouvoy, R., Moha, N., Duchien, L.: Detecting antipatterns in android
apps. In: Proceedings of the Second ACM International Conference on Mobile
Software Engineering and Systems. pp. 148–149. IEEE Press (2015)

11. Li, D., Halfond, W.G.: An investigation into energy-saving programming practices
for android smartphone app development. In: Proceedings of the 3rd International
Workshop on Green and Sustainable Software. pp. 46–53. ACM (2014)

12. Li, D., Halfond, W.G.: Optimizing energy of http requests in android applications.
In: Proceedings of the 3rd International Workshop on Software Development Life-
cycle for Mobile. pp. 25–28. ACM (2015)

13. Li, D., Hao, S., Gui, J., Halfond, W.G.: An empirical study of the energy consump-
tion of android applications. In: Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on. pp. 121–130. IEEE (2014)

14. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M.,
Poshyvanyk, D.: Mining energy-greedy api usage patterns in android apps: an em-
pirical study. In: Proceedings of the 11th Working Conference on Mining Software
Repositories. pp. 2–11. ACM (2014)

15. Linares-Vásquez, M., Bernal-Cárdenas, C., Bavota, G., Oliveto, R., Di Penta, M.,
Poshyvanyk, D.: Gemma: multi-objective optimization of energy consumption of
guis in android apps. In: Proceedings of the 39th International Conference on
Software Engineering Companion. pp. 11–14. IEEE Press (2017)

16. Malavolta, I., Procaccianti, G., Noorland, P., Vukmirović, P.: Assessing the impact
of service workers on the energy efficiency of progressive web apps. In: Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems.
pp. 35–45. IEEE Press (2017)

17. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
the energy consumption of software? PeerJ PrePrints 3, e886v1 (2015)

18. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with eprof. In: Proceedings of the 7th
ACM european conference on Computer Systems. pp. 29–42. ACM (2012)

19. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.M.: Fine-grained power mod-
eling for smartphones using system call tracing. In: Proceedings of the sixth con-
ference on Computer systems. pp. 153–168. ACM (2011)

20. Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Helping
programmers improve the energy efficiency of source code. In: Proceedings of the
39th International Conference on Software Engineering Companion. pp. 238–240.
IEEE Press (2017)

21. Reimann, J., Aβmann, U.: Quality-aware refactoring for early detection and reso-
lution of energy deficiencies. In: Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing. pp. 321–326. IEEE Computer
Society (2013)

22. Reimann, J., Brylski, M., Aßmann, U.: A tool-supported quality smell catalogue for
android developers. In: Proc. of the conference Modellierung 2014 in the Workshop
Modellbasierte und modellgetriebene Softwaremodernisierung–MMSM. vol. 2014
(2014)

23. Sahin, C., Pollock, L., Clause, J.: How do code refactorings affect energy usage?
In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. p. 36. ACM (2014)

24. Sahin, C., Pollock, L., Clause, J.: From benchmarks to real apps: Exploring the
energy impacts of performance-directed changes. Journal of Systems and Software
117, 307–316 (2016)

25. Wilke, C., Richly, S., Gotz, S., Piechnick, C., Aßmann, U.: Energy consumption and
efficiency in mobile applications: A user feedback study. In: Green Computing and
Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CP-
SCom), IEEE International Conference on and IEEE Cyber, Physical and Social
Computing. pp. 134–141. IEEE (2013)

26. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accu-
rate online power estimation and automatic battery behavior based power model
generation for smartphones. In: Proceedings of the eighth IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis. pp.
105–114. ACM (2010)

