Green Software Lab*

Orlando Belo!3, Marco Couto??, Jacome Cunha?*, Jodao Paulo Fernandes®,
Miguel Guimardes®?3, Rui Pereira®?, and Jodo Saraiva??

' ALGORITMI, ?HASLab / INESC TEC
3Universidade do Minho, *Universidade Nova de Lisboa
SRELEASE, Universidade da Beira Interior
{obelo,mcouto,mguimaraes,ruipereira, jas}@di.uminho.pt
jacome@fct.unl.pt, jpf@di.ubi.pt

Abstract. This document describes the green software laboratory where
we develop techniques and tools to help software engineers in green de-
cision making. This laboratory aims at providing a software engineering
discipline for energy-aware software. Thus, it both adapts and develop
new engineering techniques to help developers to monitor, to analyze and
to optimize their software in terms of energy consumption. This short
papers briefly describes such techniques and tools.

1 Introduction

The current widespread use of non-wired but powerful computing devices, such
as, for example, smartphones, laptops, etc., is changing the way both computer
manufacturers and software engineers develop their products. In fact, comput-
er/software performance (ie, execution time), is no longer the only and main
concern. Energy consumption is becoming an increasing bottleneck for both
hardware and software systems. In average, close to 50% of the energy costs of
an organization can be attributed to the IT departments [1].

Step-by-step, some businesses have begun to promote “green” initiatives, in
hopes of reducing the emissions and energy costs. For example, looking at the
data center sector, Symantec Corporation decided to reduce COy emissions by
15% by 2012. To accomplish it, they decided to consolidate a data center, and
after finding out 60% of end user’s computers were left powered on overnight,
they decided to place users’ computers in stand-by mode after four hours of
inactivity [2]. These steps helped reduce approximately $2 million and over 6
million kilowatts of energy.

Sometimes businesses can not just physically reduce consumption as Syman-
tec did. Recently, hardware manufacturers and researchers have developed tech-
niques to reduce energy consumption mainly focused on developing and opti-
mizing their hardware. However, very much like how a driver operating a car

* This work is partly funded by the Innovation Agency, SA, Northern Regional Oper-
ational Programme, Financial Incentive Grant Agreement under the Incentive Re-
search and Development System, Project No. 38973.

2 Green Software Lab

can heavily influence its fuel consumption, the software which operates such
hardware can drastically influence its energy consumption too! This results in
energy-efficiency in the hardware level to be canceled out by inefficient energy
consumption of software, where “Up to 90% of energy used by a computer can
be attributed to software” (the other 10% is pure hardware energy usage) [3].

Recent research in software engineering has defined powerful techniques to
improve software developers productivity. Providing advanced type and modular
systems, powerful query mechanisms for Data Base Systems (DBS), and inte-
grated development environments (IDE) are some examples of that, as well as
compiler construction techniques to improve execution time of software.

Unfortunately, none of these techniques nor tools have been adapted to sup-
port greenware software development. Indeed, there is no software engineering
discipline providing techniques and tools to help software developers to analyze,
understand, query nor optimize the energy consumption of their software! As a
consequence, if a developer notices that their software is responsible for a large
battery drain, they get no support from the environment being used.

This short paper describes the Green Software Laboratory (GSL) where tech-
niques and tools are being developed to offer software developers mechanisms to
reason about their software in terms of energy consumption as they are already
able to reason in terms of execution time and memory consumption. Thus, GSL
reuses, adapts and develops techniques to monitor, analyze and optimize the
energy consumption of software systems. Next section presents GSL and briefly
describes the techniques used to analyze/develop energy-aware software. After
that we present the tools that implement such techniques and support software
developers in green decision making.

2 The Green Software Lab

The Green Software Lab is a team consisting of various Postdoctoral and PhD
researchers spanning several universities and research centers throughout Portu-
gal. We specifically focus on the software, where our mission is to apply source
code analysis techniques to detect anomalies in energy consumption and to de-
fine transformations to reduce such consumption. We aim to develop methods
to analyze energy leaks in software source code. Thus, the focus of our lab is
to reason about energy consumption at the software level. In this context, we
define energy leaks as an excessive consumption of energy by a software system.

We have begun adapting well known techniques for fault localization and
program debugging in software source code, to locate energy-leaks in software
and to relate such leaks to the software source code. We have also begun ana-
lyzing database queries, and through an analysis of query execution plans, can
estimate the expected energy consumption of queries.

Using these and other analysis techniques, we will identify what program-
ming practices, design patterns, and other factors contribute to high energy
consumption. Being able to locate such energy leaks in the developer’s code, we

Green Software Lab 3

will construct both a catalog of software energy metrics and a catalog of red
smells (i.e., energy inefficient smells in source code).

These techniques are the main building blocks for providing a set of source
code refactorings and supporting tools that help developers in green decision
making and in optimizing the code they write. A source code refactor is a source-
to-source transformation that does not change the semantic behaviour of a pro-
gram. Our energy-aware catalog of refactorings, named green refactorings, will
be used to improve software energy consumption.

The team is developing libraries and tools to support green decision mak-
ing. To analyze and locate energy leaks, an energy profiler, and other energy
monitoring tools, will be developed. To optimize energy leaks, a framework im-
plementing the red smells/green refactorings will be defined as IDE plugins.
Such a framework will localize a red smell in the source code, while also provid-
ing the programmer information, and automatically optimize the energy usage.
This will allow programmers to finally become energy-aware and have ways to
support green decision making.

3 Tools

Green Droid [4] is an Android source code analyzer which relates anomalous
energy consumption to source code in an application by analyzing different ex-
ecutions (tests). It uses an API adapted from an existing energy profiler for
Android applications (Power Tutor [5]) to obtain the power consumption values.

The tool uses information about program trace, energy consumption and
execution time to classify the application’s methods accordingly, generating 3
graphs for the analysis: a sunburst diagram, a pie chart and a line chart com-
paring execution time with consumption per second. These graphs are shown in
Figures 1.a, 1.b and 1.c, respectively.

\w\\ W, w0
\ 4
A\ > - s
£ ~
i - 100
0]
o, . o
/I' \%\ oo Time fs)
LT S

1203456 78 81011121314 151617 18 10 20

b)
<)

Fig. 1: Different types of graphs generated by Green Droid

SPELL - SPectrum-based Energy Leak Localization [6] is a language indepen-
dent source-code analysis tool, based on a spectrum-based fault localization tech-
nique [7], a technique originally used for detecting bugs within programs, which
detects energy leaks from various levels ranging from packages, functions, and
source line level. Using the RAPL [8] framework to obtain accurate energy con-
sumption values, and a series of tests cases, we can detect which sections of the

Green Software Lab

program (components) contain energy leaks. An abstract representation of this
technique is shown in Figure 2.

Energy consumption

Tests
e [Blu|t

m rgc, const cl
int factorialTotal = @; T energy consumption

{
factorialCalculate(value);
ctorial;

facts 0s_|@,
factorialTotal += factor: 1

©~30300300

printf("The sum of all numbers' factorial is: ¥d", factoriallotal); [KN ERE High energy consumption
¥

08 |03 [09 |03 |0

Fig. 2: Spectrum-based Fault Localization technique

gSQL 9] is a technique developed with the purpose of creating energy con-
sumption plans for SQL queries. With the help of an external energy monitoring
device, we were capable of measuring the energy consumption of query execu-
tions. Using these values, we were able to estimate the consumption costs of
certain SQL operators, and have created an energy consumption model which is
embedded within the PostgreSQL kernel.

References

1.

Harmon, R.R., Auseklis, N.: Sustainable it services: Assessing the impact of green
computing practices. In: Management of Engineering & Technology, 2009. PICMET
2009. Portland International Conference on, IEEE (2009) 1707-1717

Thompson, J.: Environmental progress and next steps. Email to Everyone Symantec
(Employees) (2008)

Standard, R.: GHG Protocol Product Life Cycle Accounting and Reporting Stan-
dard ICT Sector Guidance. In: Greenhouse Gas Protocol. Number January. (2013)
Couto, M., Cargao, T., Cunha, J., Fernandes, J.P., Saraiva, J.: Detecting anomalous
energy consumption in android applications. In: Programming Languages. Springer
(2014) 77-91

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Ac-
curate online power estimation and automatic battery behavior based power model
generation for smartphones. In: Proceedings of the eighth IEEE/ACM/IFIP in-
ternational conference on hardware/software codesign and system synthesis, ACM
(2010) 105-114

Carcao, T.: Measuring and visualizing energy consumption within software code.
In: Visual Languages and Human-Centric Computing (VL/HCC), 2014 IEEE Sym-
posium on, IEEE (2014) 181-182

Abreu, R., Zoeteweij, P., Van Gemund, A.J.: Spectrum-based multiple fault lo-
calization. In: Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM
International Conference on, IEEE (2009) 88-99

Rotem, E., Naveh, A., Ananthakrishnan, A., Rajwan, D., Weissmann, E.: Power-
management architecture of the intel microarchitecture code-named sandy bridge.
IEEE Micro (2) (2012) 2027

Goncalves, R., Saraiva, J., Belo, O.: Defining energy consumption plans for data
querying processes. In: 2014 IEEE Fourth International Conference on Sustainable
Computing and Communications, SustainCom 2014. (Dec 2014) 641-647

